КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Виды спектров
Формула тонкой линзы Формула тонкой линзы связывает d (расстояние от предмета до оптического центра линзы), f (расстояние от оптического центра до изображения) с фокусным расстоянием F (рис. 101). Треугольник АВО подобен треугольнику OB1A1. Из подобия следует, что Треугольник OCF подобен треугольнику FB1A1. Из подобия следует, что Это и есть формула тонкой линзы. Расстояния F, d и f от линзы до действительных точек берутся со знаком плюс, расстояния от линзы до мнимых точек - со знаком минус. Отношение размера изображения Н к линейному размеру предмета h называют линейным увеличением линзы Г. Спектральный состав излучения веществ весьма разнообразен. Но, несмотря на это, все спектры, как показывает опыт, можно разделить на три типа. Непрерывные спектры. Солнечный спектр или спектр дугового фонаря является непрерывным. Это означает, что в спектре представ.тены волны всех длин волн. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу (см. рис. V, 1 на цветной вклейке). Распределение энергии по частотам, т. е. спектральная плотность интенсивности излучения, для разных тел различно. Например, тело с очень черной поверхностью излучает электромагнитные волны всех частот, но кривая зависимости спектральной плотности интенсивности излучения от частоты имеет максимум при определенной частоте Vmax (рис. 10.3). Энергия излучения, приходящаяся на очень малые (V -> 0) и очень большие (v -> v ) частоты, ничтожно мала. При повышении температуры тела максимум спектральной плотности излучения смещается в сторону коротких волн. Непрерывные (или сплошные) спектры, как показывает опыт, дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть те.ло до высокой температуры. Характер непрерывного спектра и сам факт его существования не только определяются свойствами отдельных излучающих атомов, но и в сильной степени зависят от взаимодействия атомов друг с другом. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновениях электронов с ионами. Линейчатые спектры. Внесем в бледное пламя газовой горелки кусочек асбеста, смоченный раствором обыкновенной поваренной соли. При наблюдении пламени в спектроскоп увидим, как на фоне едва различимого непрерывного спектра пламени вспыхнет яркая желтая линия (см.рис. V, 2 на цветной вклейке). Эту желтую линию дают пары натрия, которые образуются при расщеплении молекул поваренной соли в пламени. На цветной вклейке приведены также спектры водорода и гелия. Каждый из спектров — это частокол цветных линий различной яркости, разделенных широкими темными полосами. Такие спектры называются линейчатыми. Наличие линейчатого спектра означает, что вещество излучает свет только вполне определенных длин волн (точнее, в определенных очень узких спектральных интервалах). На рисунке 10.4 показано примерное распределение спектральной плотности интенсивности излучения в линейчатом спектре. Каждая линия имеет конечную ширину. Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. В этом случае свет излучают атомы, которые практически не взаимодействуют друг с другом. Это самый фундаментальный, основной тип спектров. Изолированные атомы излучают свет строго определенных длин волн. Обычно для наблюдения линeйчaтыx спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются, и, наконец, при очень большом сжатии газа, когдаa взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр. Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляетет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спеутров полосатые спектры образуются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, используют свечение паров вещества в пламени или свечение газового разряда. Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны. Энергия этих волн определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны. Так, красное стекло пропускает волны, соответствующие красному свету ( 8 • 10-5 см), и поглощает все остальные. Если пропускать белый свет сквозь холодный, не излучающий газ, то на фоне непрерывного спектра источника появляются темные линии (см. рис. V, 5—8 на цветной вклейке). Газ поглощает наиболее интенсивно свет именно тех длин волн, которые он сам испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра — это линии поглощения, образующие в совокупности спектр поглощения. Существуют непрерывные, линейчатые и полосатые спектры излучения и столько же видов спектров поглощения.
Спектральный анализ — совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральные анализы позволяют определять элементарный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта.
Дата добавления: 2015-05-07; Просмотров: 1760; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |