Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Закономерности дискретных процессов




Процессы в реальном микро- и макромире представляют совокупность единичных актов взаимодействия отдельных частиц и тел; то есть реальные процессы – дискретны. В то же время, классическая физика с давних времен рассматривает континуальные (непрерывные) процессы. Исторически это, видимо, вызвано способностью человека ощущать, чувствовать именно такие, недискретные, процессы, в том числе изменение температуры, давления, уровня воды и т.п.

Математический аппарат, в частности, интегро-дифференциальное исчисление, также приспособлен к описанию недискретных процессов, процессов в полях средних (среднестатистических) величин. Это – как средняя температура пациентов в клинике: не учитываются многие дискретные акты взаимодействия, в том числе, определяющие течение процессов, особенно, при фазовых переходах, а также – процессов в микромире. Разработка представлений о механизмах дискретных процессов, зависимостей и алгоритмов для их описания способствует преодолению кризиса современной классической физики.

Такие зависимости представлены в /15/. Основными из них являются:

(1) – третий закон Ньютона в форме Ньютона;

(2) – динамический закон Кулона;

(3) – закономерность динамики фотоэффекта;

(4) – закон сохранения количества частиц и эволюции многочастичной системы;

(5) – макрозакономерность фазового перехода;

(6) – микрозакономерность фазового перехода.

Уравнение (1) встречалось выше. Это – закон сохранения изменения энергии. Он стал известен в России с 1915 года, с момента издания русского перевода труда И.Ньютона «Математические начала натуральной философии» с латинского (1686 год).

Однако им пользовались в форме равенства статических сил как результата действия сил, приведшего к напряженному состоянию. По Ньютону закон (1) читается так: произведение силы действия на скорость действия равно произведению силы реакции на скорость реакции. Это может привести к возникновению больших сил (по аналогии с домкратом, полиспастом, рычагом, ударом, взрывом и т.п.) и образованию нового качества, например, высокопотенциальной энергии взамен затраченной низкопотенциальной. То есть, третий закон в форме Ньютона исключает второй закон классической термодинамики об одностороннем изменении энтропии только в сторону ее увеличения.

Применение третьего закона в форме Ньютона обязательно к процессам микромира, которые являются дискретными, так как определяются актами взаимодействия между собой индивидуальных частиц при высоких, околосветовых, скоростях их движения.

Уравнение (2) – это связь причины-действия, как произведения силы на скорость фотона , и энергетическим обеспечением – следствием действия в элементарном акте. Здесь: – постоянная тонкой структуры; – энергия; – частота; – постоянная Планка как характеристика минимального действия.

Уравнение (3) показывает, что маленькая сила действия фотона, движущегося с большой скоростью (света), в веществе с малой скоростью распространения возмущений (скоростью звука) вызывает большую силу , локализованную в микрозоне и способную привести к возникновению новой структуры, фазы, выделению энергии, в том числе, высокопотенциальной, то есть привести к созидательному процессу, а значит уменьшению энтропии системы.

В уравнении (4) функция , называемая Синергией и Лагранжианом, являющаяся аналогом энтропии , много больше ее, >> .

Это свидетельствует о том, что система взаимодействующих частиц несоизмеримо более вероятна, чем идеальная система распределения частиц в модели молекулярного хаоса. Собственно, именно это практически показал Д.Х.Базиев /3/ на примере организованного электродинамического взаимодействия молекул газа, в том числе воздуха, описанном в первой части настоящей монографии.

Все типы фазовых переходов имеют единую закономерность: (5) – для изменения характеристики (температура, давление и т.п.); (6) – для изменения числа частиц, так как пропорциональна числу прореагировавших частиц. Здесь:

– максимальное значение характеристики;

– характеристика на -той стадии процесса;

– внешнее воздействие;

показатель – для одномерных процессов, – для двумерных и – для трехмерных.

Графики (5), (6) имеют вид логистической (гистерезисной) кривой и совпадают, трансформируются в одну кривую, для разных веществ и фазовых переходов.

Приведенные зависимости (1)-(6) приспособлены к описанию дискретных множеств, что наиболее полно отражает течение и динамику реальных процессов в природе.




Поделиться с друзьями:


Дата добавления: 2015-05-08; Просмотров: 363; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.