КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Метод гипотезы
Формализация широко используется в химии, логике и математике. В середине XIX в. сформировалась математическая логика, которая во второй половине XX столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных машин, в решении задач автоматизации производства и т. д. Следует заметить, что формализованные искусственные языки не обладают гибкостью и богатством языка естественного. Зато в них отсутствует многозначность терминов (полисемия), свойственная естественным языкам. Они характеризуются точно построенным синтаксисом и однозначной семантикой. Формализация. Аксиомы
Формализация - особый подход в научном познании, который заключается в использовании специальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их теоретических положений и оперировать вместо этого некоторым множеством символов (знаков). Этот метод познания заключается в построении абстрактно-математических моделей, раскрывающих сущность изучаемых процессов действительности. При формализации рассуждения об объектах переносятся в плоскость оперирования со знаками (формулами). Отношения знаков заменяют собой высказывания о свойствах и отношениях предметов. Таким путем создается обобщенная знаковая модель некоторой предметной области, позволяющая обнаружить структуру различных явлений и процессов при отвлечении от качественных характеристик последних. Вывод одних формул из других по строгим правилам логики представляет формальное исследование основных характеристик структуры различных, порой весьма далеких по своей природе явлений. Примером формализации являются широко используемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая математическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальнейшего их познания. Из курса математической логики известно, что для построения формальной системы необходимо задать алфавит, задать правила образования формул, задать правила вывода одних формул из других. Важным достоинством формальной системы является возможность проведения в ее рамках исследования какого-либо объекта чисто формальным путем, оперируя знаками. Другое достоинство формализации состоит в обеспечении краткости и четкости записи научной информации. Существует аксиоматический метод познания. При таком подходе задается набор исходных положений, не требующих доказательства, которые называются аксиомами, или постулатами. Затем из них по определенным правилам строится система выводных предложений. Совокупность исходных аксиом и выведенных на их основе предложений образует аксиоматически построенную теорию. Число аксиом варьируется в широких границах: от двух-трех до нескольких десятков. К аксиомам и выводам из них предъявляются требования непротиворечивости, независимости и полноты. Следование определенным, четко зафиксированным правилам вывода позволяет упорядочить процесс рассуждения при развертывании аксиоматической системы, сделать это рассуждение более строгим и корректным. Чтобы задать аксиоматической систему, требуется некоторый язык – алфавит. Если формализация имеет место, то аксиоматическая система является формальной, а положения системы приобретают характер формул. Получаемые в результате вывода формулы называются теоремами, а используемые при этом аргументы — доказательствами теорем.
Метод гипотезы - сложный комплексный метод познания, включающий в себя все многообразие его форм и направленный на установление законов, принципов и теорий. Ознакомимся со структурой метода гипотезы. Первой стадией является ознакомление с эмпирическим материалом, подлежащим теоретическому объяснению. Первоначально этому материалу стараются дать объяснение с помощью уже существующих в науке законов и теорий. Если таковые отсутствуют, ученый переходит ко второй стадии — выдвижению догадки или предположения о причинах и закономерностях данных явлений. При этом он старается пользоваться различными приемами исследования: индуктивным наведением, аналогией, моделированием и др. Третья стадия есть стадия оценки серьезности предположения и отбора из множества догадок наиболее вероятной. Гипотеза проверяется на логическую непротиворечивость, на совместимость с фундаментальными теоретическими принципами данной науки. На четвертой стадии происходит разворачивание выдвинутого предположения и дедуктивное выведение из него эмпирически проверяемых следствий. На этой стадии возможна частичная переработка гипотезы, введение в нее с помощью мысленных экспериментов уточняющих деталей. На пятой стадии проводится экспериментальная проверка выведенных из гипотезы следствий. Гипотеза или получает эмпирическое подтверждение, или опровергается в результате экспериментальной проверки. Однако эмпирическое подтверждение следствий из гипотезы не гарантирует ее истинности, а опровержение одного из следствий не свидетельствует однозначно о ее ложности в целом. Статус объясняющего закона, принципа или теории получает лучшая по результатам проверки из предложенных гипотез. Из множества гипотез выделяют объяснительные и экзистенциональные гипотезы. Объяснительная гипотеза есть предположение о законе, о явлении. Примером экзистенциальных гипотез является предположения о существовании неизвестных науке элементарных частиц, единиц наследственности, химических элементов, новых биологических видов и т. п. Наряду с основными теоретическими гипотезами могут существовать вспомогательные гипотезы, позволяющие приводить основную гипотезу в лучшее соответствие с опытом. Существуют и так называемые рабочие гипотезы, которые позволяют лучше организовать сбор эмпирического материала, но не претендуют на его объяснение. Отдельно следует выделить метод математической гипотезы, который характерен для наук с высокой степенью математизации. В методе математической гипотезы мышление идет другим путем. Сначала для объяснения количественных зависимостей подбирается из смежных областей науки подходящее уравнение, что часто предполагает и его видоизменение, а затем этому уравнению пытаются дать содержательное истолкование. Он применим прежде всего в тех науках, где накоплен богатый арсенал математических средств, например в физике.
Смежные методы
Дата добавления: 2015-05-08; Просмотров: 1122; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |