Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Моделирование сосудистой системы




Математическое моделирование сосудистой системы сводится в основном к применению фундаментальных физических законов к кровотоку и сосудистой стенке (Б. И. Ткаченко, 1984). На каждую клетку в потоке крови действует локальное напряжение (τ), равное сумме всех сил, исходящих от окружающих элементов и распределенных по его поверхности. Под действием (τ) частицы крови деформируются. Мерой деформации является относительное удлинение (ε), тогда как Δε/ dt характеризует скорость деформации. Данные представления лежат в основе моделирования текучести крови при применении к ней закономерностей, характерных для Ньютоновской жидкости. Напряжение, оказываемое на каждую частицу в крупных сосудах, может быть охарактеризовано формулой:

где η - коэффициент пропорциональности, зависящий от состава крови и температуры (вязкость крови).

Исследование модели показало, что вязкость крови зависит еще и от перестроек внутренней структуры потока при ее течении, которое выражается в изменении профиля скоростей соседних слоев. В связи с этим считается, что кровь при определенных условиях обладает свойствами и неньютоновcкой жидкости. Особенно сильно эти свойства проявляются в микроcосудах и при малых скоростях потоков.

При замедлении скорости кровотока происходит переход от ламинарного течения крови к турбулентному, вязкость крови (η) при этом увеличивается, что приводит к увеличению общего периферического сопротивления. При расстройствах регионарного кровотока, например, при шоке, повышение вязкости может способствовать развитию стаза, что приведет к ограничению венозного возврата, а следовательно и сердечного выброса.

При феномене Санарелли-Шварцмана и других видах дисси-минированного внутрисоеудистого свертывания (ДВС) динамическая вязкость крови в микроциркуляторном русле резко возрастает в результате агрегации форменных элементов крови. В то же время вязкость крови в крупных сосудах значительно снижена, текучесть ее увеличена, что приводит к шунтированию кровотока в обход микроциркуляторного русла, и вызывает недостаточность перфузии ткани при относительно высоком уровне венозного возврата.

Другой распространенной математической моделью в гемодинамике является «модель упругого тела». В данном случае упругому телу уподобляется сосудистая стенка. Как упругое тело она подчиняется закону Гука:

где Е - постоянная (остальные обозначения смотри выше).

Реальная сосудистая стенка обладает еще и вязкими свойствами, то есть для нее:

Вязкоупругие свойства стенки сосуда описываются следующей зависимостью:

где λ -время спонтанного исчезновения напряжения при неизменной деформации;

η - вязкость сосудистой стенки.

Движение крови по одиночному сосуду математически выражается формулой Пуазейля:

где: ΔР - перепад давлений;

l -длина сосуда;

Q -объемная скорость кровотока (остальные обозначения см. выше).

Так как кровь может рассматриваться как однородная жидкость только в сосудах с радиусом, большим, чем 150 мкм, а в капиллярах мы сталкиваемся с поршневым режимом течения крови, то применимость формулы Пуазейля ограничена.

Среди физических моделей элементов сосудистого русла следует упомянуть модель компрессионной камеры О. Франка. Согласно этой модели крупные артерии могут быть представлены в виде упругого резервуара, на входе связанного с сердцем, а на выходе-с жесткой системой труб, моделирующих периферическое сопротивление сосудов. Тогда:

где: Qвх -ударный объем;

V -объем компрессионной камеры;

Р -давление в ней;

R -сопротивление сосудов, отводящих кровь;

Р/R -расход крови.

Так как где K -коэффициент упругости камеры, то

Модель справедливо предсказывает для диастолы экспоненциальное падение Р и Р/R, а для систолы . Модель позволяет объяснить постоянство тока крови в мелких сосудах при пульсирующем характере сердечного выброса. О. Франк демонстрирует тип модели с сосредоточенными параметрами сосудистого русла, так как при переходе от одного его отдела к другому свойства системы меняются скачкообразно.

Многие из физических моделей сосудистого русла основаны на «теории подобия». Уравнения, описывающие параметры кровообращения и электродинамические процессы, практически аналогичны.

 




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 559; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.