Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Аппаратура




Немаловажная часть разговора о звуке связана с аппаратурой. Существует много различных устройств для обработки и ввода/вывода звука. Касательно обычного персонального компьютера следует подробнее остановиться на звуковых картах. Звуковые карты принято делить на звуковые, музыкальные и звукомузыкальные. По конструкции же все звуковые платы можно разделить на две группы: основные (устанавливаемые на материнской плате компьютера и обеспечивающие ввод и вывод аудио данных) и дочерние (имеют принципиальное конструктивное отличие от основных плат - они чаще всего подключаются к специальному разъему, расположенному на основной плате). Дочерние платы служат чаще всего для обеспечения или расширения возможностей MIDI-синтезатора.

Звукомузыкальные и звуковые платы выполняются в виде устройств, вставляемых в слот материнской платы (либо уже встроены в нее изначально). Визуально они имеют обычно два аналоговых входа - линейный и микрофонный, и несколько аналоговых выходов: линейные выходы и выход для наушников. В последнее время карты стали оснащаться также и цифровым входом и выходом, обеспечивающим передачу аудио между цифровыми устройствами. Аналоговые входы и выходы обычно имеют разъемы, аналогичные разъемам головных наушников (1/8”). Вообще, входов у звуковой платы немного больше, чем два: аналоговые CD, MIDI и другие входы. Они, в отличие от микрофонного и линейного входов, расположены не на задней панели звуковой платы, а на самой плате; могут иметься и другие входы, например, для подключения голосового модема. Цифровые входы и выходы обычно выполнены в виде интерфейса S/PDIF (интерфейс цифровой передачи сигналов) с соответствующим разъемом (S/PDIF – сокращение от Sony/Panasonic Digital Interface - цифровой интерфейс Sony/Panasonic). S/PDIF - это «бытовой» вариант более сложного профессионального стандарта AES/EBU (Audio Engineering Society / European Broadcast Union). Сигнал S/PDIF используется для цифровой передачи (кодирования) 16-разрядных стерео данных с любой частотой дискретизации. Помимо перечисленного, на звукомузыкальных платах имеется MIDI-интерфейс с разъемами для подключения MIDI-устройств и джойстиков, а также для подсоединения дочерней музыкальной карты (хотя в последнее время возможность подключения последней становится редкостью). Некоторые модели звуковых карт для удобства пользователя оснащаются фронтальной панелью, устанавливаемой на лицевой стороне системного блока компьютера, на которой размещаются разъемы, соединенные с различными входами и выходами звуковой карты.

Определим несколько основных блоков, из которых состоят звуковые и звукомузыкальные платы.

1. Блок цифровой обработки сигналов (кодек). В этом блоке осуществляются аналого-цифровые и цифро-аналоговые преобразования (АЦП и ЦАП). От этого блока зависят такие характеристики карты, как максимальная частота дискретизации при записи и воспроизведении сигнала, максимальный уровень квантования и максимальное количество обрабатываемых каналов (моно или стерео). В немалой степени от качества и сложности составляющих этого блока зависят и шумовые характеристики.

2. Блок синтезатора. Присутствует в музыкальных картах. Выполняется на основе либо FM-, либо WT-синтеза, либо на обоих сразу. Может работать как под управлением собственного процессора, так и под управлением специального драйвера.

3. Интерфейсный блок. Обеспечивает передачу данных по различным интерфейсам (например, S/PDIF). У чисто звуковой карты этот блок чаще отсутствует.

4. Микшерный блок. В звуковых платах микшерный блок обеспечивает регулировку:

  • уровней сигналов с линейных входов;
  • уровней с MIDI входа и входа цифрового звука;
  • уровня общего сигнала;
  • панорамирования;
  • тембра.

 

Рассмотрим важнейшие параметры, характеризующие звуковые и звукомузыкальные платы. Наиболее важными характеристиками являются: максимальная частота дискретизации (sampling rate) в режиме записи и в режиме воспроизведения, максимальный уровень квантования или разрядность (max. quantization level) в режиме записи и воспроизведения. Кроме того, так как звукомузыкальные платы имеют еще и синтезатор, то к их характеристикам относят и параметры установленного синтезатора. Естественно, чем с большим уровнем квантования карта способна кодировать сигналы, тем большее качество сигнала при этом достигается. Все современные модели звуковых карт способны кодировать сигнал с уровнем 16 бит. Одной из важных характеристик является возможность одновременного воспроизведения и записи звуковых потоков. Особенность карты одновременно воспроизводить и записывать называют полнодуплексной (full duplex). Есть еще одна характеристика, которая зачастую играет решающую роль при покупке звуковой карты - отношение сигнал/шум (Signal/Noise Ratio, S/N). Этот показатель влияет на чистоту записи и воспроизведения сигнала. Отношение сигнал/шум – это отношение мощности сигнала к мощности шума на выходе устройства, этот показатель принято измерять в дБ. Хорошим можно считать отношение 80-85 дБ; идеальным – 95-100 дБ. Однако нужно учитывать, что на качество воспроизведения и записи сильно влияют наводки (помехи) со стороны других компонент компьютера (блока питания и проч.). В результате этого отношение сигнал/шум может изменяться в худшую сторону. На практике методов борьбы с этим существует достаточно много. Некоторые предлагают заземлить компьютер. Другие, дабы как можно более тщательно уберечь звуковую карту от наводок, «выносят» ее за пределы корпуса компьютера. Однако полностью уберечься от наводок очень тяжело, так как даже элементы самой карты создают наводки друг на друга. С этим тоже пытаются бороться и для этого экранируют каждый элемент на плате. Но сколько бы усилий не прилагалось к решению этой проблемы, полностью исключить влияние внешних помех невозможно.

Еще одна не менее важная характеристика – коэффициент нелинейных искажений или Total Harmonic Distortion, THD. Этот показатель также критическим образом влияет на чистоту звучания. Коэффициент нелинейных искажений измеряется в процентах: 1% - «грязное» звучание; 0.1% - нормальное звучание; 0.01% - чистое звучание класса Hi-Fi; 0.002% - звучание класса Hi-Fi – Hi End.. Нелинейные искажения – результат неточности в восстановлении сигнала из цифрового вида в аналоговый. Упрощенно, процесс измерения этого коэффициента проводится следующим образом. На вход звуковой карты подается чистый синусоидальный сигнал. На выходе устройства снимается сигнал, спектр которого представляет собой сумму синусоидальных сигналов (сумма исходной синусоиды и ее гармоник). Затем по специальной формуле рассчитывается количественное соотношение исходного сигнала и его гармоник, полученных на выходе устройства. Это количественное соотношение и есть коэффициент нелинейных искажений (THD).

Что такое MIDI-синтезатор? Термин «синтезатор» обычно используется применительно к электронному музыкальному инструменту, в котором звук создается и обрабатывается, меняя свою окраску и характеристики. Естественно, название этого устройства пошло от его основного предназначения – синтеза звука. Основных методов синтеза звука существует всего два: FM (Frequency modulation – частотная модуляция) и WT (Wave Table – таблично-волновой). Поскольку мы не можем здесь подробно останавливаться на их рассмотрении, опишем лишь основную идею методов. В основе FM-синтеза лежит идея, что любое даже самое сложное колебание является по сути суммой простейших синусоидальных. Таким образом, можно наложить друг на друга сигналы от конечного числа генераторов синусоид и путем изменения частот синусоид получать звуки, похожие на настоящие. Таблично-волновой синтез основывается на другом принципе. Синтез звука при использовании такого метода достигается за счет манипуляций над заранее записанными (оцифрованными) звуками реальных музыкальных инструментов. Эти звуки (они называются сэмплами) хранятся в постоянной памяти синтезатора.

MIDI-синтезатор – это синтезатор, отвечающий требованиям стандарта, о котором мы сейчас поговорим. MIDI – это общепринятая спецификация, связанная с организацией цифрового интерфейса для музыкальных устройств, включающая в себя стандарт на аппаратную и программную части.

рис. 7

Эта спецификация предназначена для организации локальной сети электронных инструментов (рис. 7). К MIDI-устройствам относятся различные аппаратные и музыкальные инструменты, отвечающие требованиям MIDI. Таким образом, MIDI-синтезатор – это музыкальный инструмент, предназначенный обычно для синтеза звука и музыки, а также удовлетворяющий спецификации MIDI. Давайте разберемся кратко, почему выделен отдельный класс устройств, названный MIDI.

Дело в том, что осуществление программной обработки звука часто сопряжено с неудобствами, обусловленными различными техническими особенностями этого процесса. Даже возложив операции по обработке звука на звуковую карту или любую другую аппаратуру, остается множество различных проблем. Во-первых, зачастую желательно пользоваться аппаратным синтезом звучания музыкальных инструментов (как минимум потому, что компьютер – это слишком общий инструмент, часто необходим просто аппаратный синтезатор звуков и музыки, не более). Во-вторых, программная обработка звука часто сопровождается временными задержками, в то время как при концертной работе необходимо мгновенное получение обработанного сигнала. По этим и другим причинам и прибегают к использованию специальной аппаратуры для обработки, а не компьютеров со специальными программами. Однако при использовании аппаратуры возникает необходимость в едином стандарте, который позволил бы соединять устройства друг с другом и комбинировать их. Эти предпосылки и заставили в 1982 году несколько ведущих в области музыкального оборудования компаний утвердить первый MIDI-стандарт, который впоследствии получил продолжение и развивается по сей день. Что же в конечном счете представляет собой MIDI-интерфейс и устройства в него входящие с точки зрения персонального компьютера?

  • Аппаратно - это установленные на звуковой карте: синтезатор различных звуков и музыкальных инструментов, микропроцессор, контролирующий и управляющий работу MIDI-устройств, а также различные стандартизованные разъемы и шнуры для подключения дополнительных устройств.
  • Программно - это протокол MIDI, представляющий собой набор сообщений (команд), которые описывают различные функции системы MIDI и с помощью которых осуществляется связь (обмен информацией) между устройствами MIDI. Сообщения можно рассматривать как средство удаленного управления.

 

Рамки данной статьи не позволяют нам углубляться в частности описания MIDI, следует отметить однако, что в отношении синтезаторов звука MIDI устанавливает строгие требования к их возможностям, примененным в них способам синтеза звука, а также к управляющим параметрам синтеза. Кроме того, для того, чтобы музыка созданная на одном синтезаторе могла бы быть легко перенесена и успешно воспроизведена на другом, были установлены несколько стандартов на соответствие инструментов (голосов) и их параметров в различных синтезаторах: стандарт General MIDI (GM), General Synth (GS) и eXtended General (XG). Базисным стандартом является GM, остальные два являются его логическими продолжениями и расширениями.

В качестве практического примера устройства MIDI, можно рассмотреть обычную MIDI-клавиатуру. Упрощенно, MIDI-клавиатура представляет собой укороченную клавиатуру рояля в корпусе с которой находится MIDI-интерфейс, позволяющий подключать ее к другим MIDI-устройствам, например, к MIDI-синтезатору, который установлен в звуковой карте компьютера. Используя специальное программное обеспечение (например, MIDI-секвенсор) можно включить MIDI-синтезатор в режим игры, например, на рояле, и нажимая на клавиши MIDI-клавиатуры слышать звуки рояля. Естественно, что роялем дело не ограничивается – в стандарте GM имеются 128 мелодических инструментов и 46 ударных. Кроме того, используя MIDI-секвенсор можно записывать исполняемые на MIDI-клавиатуре ноты в компьютер, для последующего редактирования и аранжировки, либо просто для элементарной распечатки нот.

Надо отметить, что поскольку MIDI-данные – это набор команд, то музыка, которая написана с помощью MIDI, также записывается с помощью команд синтезатора. Иными словами, MIDI-партитура – это последовательность команд: какую ноту играть, какой инструмент использовать, какова продолжительность и тональность ее звучания и так далее. Знакомые многим MIDI-файлы (.MID) есть нечто иное, как набор таких команд. Естественно, что поскольку имеется великое множество производителей MIDI-синтезаторов, то и звучать один и тот же файл может на разных синтезаторах по-разному (потому что в файле сами инструменты не хранятся, а есть лишь только указания синтезатору какими инструментами играть, в то время как разные синтезаторы могут звучать по-разному).

Вернемся к рассмотрению звукомузыкальных плат. Поскольку мы уже уточнили, что такое MIDI, нельзя обойти стороной характеристики встроенного аппаратного синтезатора звуковой карты. Современный синтезатор, чаще всего, основан на так называемой «волновой таблице» - WaveTable (вкратце, принцип работы такого синтезатора состоит в том, что звук в нем синтезируется из набора записанных звуков путем их динамического наложения и изменения параметров звучания), раньше же основным типом синтеза являлся FM (Frequency Modulation – синтез звука посредством генерирования простых синусоидальных колебаний и их смешения). Основными характеристиками WT-синтезатора являются: количество инструментов в ПЗУ и его объем, наличие ОЗУ и его максимальный объем, количество возможных эффектов обработки сигналов, а также возможность поканальной эффект-обработки (конечно, в случае наличия эффект-процессора), количество генераторов, определяющих максимальное число голосов в полифоническом (многоголосном) режиме и, может быть самое главное, стандарт, в соответствии с которым выполнен синтезатор (GM, GS или XG). Кстати, объем памяти синтезатора - не всегда величина фиксированная. Дело в том, что в последнее время синтезаторы перестали иметь свое ПЗУ, а пользуются основным ОЗУ компьютера: в этом случае все используемые синтезатором звуки хранятся в файле на диске и при необходимости считываются в ОЗУ.

 

7. Программное обеспечение.

Тема программного обеспечения очень широка, поэтому здесь мы только вкратце обсудим основные представители программ для обработки звука.

Наиболее важный класс программ – редакторы цифрового аудио. Основные возможности таких программ это, как минимум, обеспечение возможности записи (оцифровки) аудио и сохранение на диск. Развитые представители такого рода программ позволяют намного больше: запись, многоканальное сведение аудио на нескольких виртуальных дорожках, обработка специальными эффектами (как встроенными, так и подключаемыми извне – об этом позже), очистка от шумов, имеют развитую навигацию и инструментарий в виде спектроскопа и прочих виртуальных приборов, управление/управляемость внешними устройствами, преобразование аудио из формата в формат, генерация сигналов, запись на компакт диски и многое другое. Некоторые из таких программ: Cool Edit Pro (Syntrillium), Sound Forge (Sonic Foundry), Nuendo (Steinberg), Samplitude Producer (Magix), Wavelab (Steinberg).

Основные возможности редактора Cool Edit Pro 2.0 (см. скриншот 1 - пример рабочего окна программы в многодорожечном режиме): редактирование и сведение аудио на 128 дорожках, 45 встроенных DSP-эффектов, включая инструменты для мастеринга, анализа и реставрации аудио, 32-битная обработка, поддержка аудио с параметрами 24 бит / 192 КГц, мощный инструментарии для работы с петлями (loops), поддержка DirectX, а также управление SMPTE/MTC, поддержка работы с видео и MIDI и прочее.

скриншот 1

Основные возможности редактора Sound Forge 6.0a (см. скриншот 2 - пример рабочего окна программы): мощные возможности не деструктивного редактирования, многозадачная фоновая обработка заданий, поддержка файлов с параметрами до 32 бит / 192 КГц, менеджер предустановок, поддержка файлов более 4 Гб, работа с видео, большой набор эффектов обработки, восстановление после зависаний, предпрослушивание примененных эффектов, спектральный анализатор и прочее.

скриншот 2

Не менее важная в функциональном смысле группа программ – секвенсоры (программы для написания музыки). Чаще всего, такие программы используют MIDI-синтезатор (аппаратный внешний или встроенный почти в любую звуковую карту, либо программный, организуемый специальным программным обеспечением). Такие программы предоставляют пользователю либо привычный нотный стан (как, например, программа Finale от CODA), либо более распространенный способ редактирования аудио на компьютере, так называемый, piano-roll (это более понятное представление музыки для людей, не знакомых с нотами; в таком представлении вертикально имеется ось с изображением клавиш пианино, а горизонтально откладывается время, таким образом, ставя на пересечении штрихи разной длинны, добиваются звучания определенной ноты с определенной продолжительностью). Встречаются и программы, позволяющие просматривать и редактировать аудио в обоих представлениях. Развитые секвенсоры помимо редактирования аудио во многом могут дублировать возможности редакторов цифрового аудио – осуществлять запись на CD, совмещать MIDI-дорожки с цифровыми сигналами и осуществлять мастеринг. Яркие представители такого класса программ: Cubase (Steinberg), Logic Audio (Emagic), Cakewalk (Twelve Tone Systems) и уже упомянутый Finale.

Основные возможности редактора Cubase 5.1 (см. скриншот 3 – пример рабочего окна программы в режиме просмотра MIDI дорожек): редактирование музыки в реальном времени используя графическое представление информации, высокое разрешение редактора (15360 пульсов на четверть), практически не лимитированное количество дорожек, 72 аудио канала, поддержка VST32, 4 эквалайзера на канал и другие поканальные эффекты, встроенные инструменты обработки с использованием аналогового моделирования (виртуальные инструменты, эффект процессоры, инструменты микширования и записи) и множество других возможностей.

скриншот 3

Основные возможности редактора Logic Audio 5 (см. скриншот 4 – пример рабочего окна программы): работа со звука при точности в 32 бита, высокое временное разрешение событий, самоадаптируемый микшер аудио и MIDI, оптимизируемый интерфейс пользователя, синхронизация с видео, виртуально неограниченное число MIDI-дорожек, обработка звука в реальном времени, полная синхронизация с MTC, MMC, SMPTE, встроенные модули обработки и автоинструменты, поддержка большого количество аппаратного оборудования, а также множество других возможностей.

скриншот 4

В наборе программ пользователя, занимающегося обработкой звука, имеется множество разных инструментов, так было раньше и так будет впредь – универсальных комбайнов для работы со звуком не бывает. Однако, не смотря на все разнообразие ПО, в программах часто используются схожие механизмы для обработки звука (например, процессоры эффектов и прочие). На каком-то этапе разработки аудио ПО, производители поняли, что удобнее сделать в своих программах возможность подключения внешних инструментов, чем каждый раз создавать заново инструменты для каждой отдельной программы. Так что многие программы, относящиеся к той или иной группе ПО, позволяют подключать так называемые «плаг-ины» - внешние подключаемые модули, расширяющие возможности обработки звука. Это стало возможным в результате появления нескольких стандартов на интерфейс между программой и подключаемым модулем. На сегодняшний день существуют два основных стандарта на интерфейс: DX и VST. Существование стандартов позволяет подключать один и тот же плаг-ин к совершенно разным программам, не заботясь о возникновении конфликтов и неполадок. Говоря о самих плаг-инах, надо сказать, что это просто огромное семейство программ. Обычно, один плаг-ин является механизмом, реализующим какой-то конкретный эффект, например, реверберацию или низкочастотный фильтр. Из интересных плаг-инов можно вспомнить, например iZotope Vinyl, - он позволяет придать звучанию эффект виниловой пластинки (см. скриншот 5 – пример рабочего окна плаг-ина в среде Cool Edit Pro), Antares AutoTune позволяет в полуавтоматическом режиме корректировать звучание вокала, а Orange Vocoder являет собой замечательный вокодер (механизм для придания звучанию различных инструментов схожести со звучанием голоса человека).

скриншот 5

Обработка звука и написание музыки – это не только творческий процесс. Иногда нужен скрупулезный анализ данных, а также осуществление поиска огрехов их звучания. Кроме того, аудио материал, с который приходится иметь дело, не всегда желаемого качества. В этой связи нельзя не вспомнить о целом ряде программ-анализаторов аудио, специально предназначенных для осуществления измерительных анализов аудио данных. Такие программы помогают представить аудио данные удобнее, чем обычные редакторы, а также внимательно изучить их с помощью различных инструментов, таких как FFT-анализаторы (построители динамических и статических амплитудно-частотных характеристик), построители сонограмм, и прочих. Одна из наиболее известных и развитых программ подобного плана – программа SpectraLAB (Sound Technology Inc.), чуть более простые, но мощные – Analyzer2000 и Spectrogram.

Программа SpectraLAB – наиболее мощный продукт подобного рода, существующий на сегодня (см. скриншот 6 – пример рабочего окна программы, на экране: спектральная картина в трез представлениях и фазовая картина). Возможности программы: 3 режима работы (пост режим, режим реального времени, режим записи), основной инструментарий – осциллограф, спектрометр (двухмерный, трехмерный, а также построитель сонограмм) и фазометр, возможность сравнения амплитудно-частотных характеристик нескольких сигналов, широкие возможности масштабирования, измерительные инструменты: нелинейных искажений, отношения сигнал/шум, искажений и прочие.

скриншот 6

Специализированные реставраторы аудио играют также немаловажную роль в обработке звука. Такие программы позволяют восстановить утерянное качество звучания аудио материала, удалить нежелательные щелчки, шумы, треск, специфические помехи записей с аудио-кассет, и провести другую корректировку аудио. Программы подобного рода: Dart, Clean (от Steinberg Inc.), Audio Cleaning Lab. (от Magix Ent.), Wave Corrector.

Основные возможности реставратора Clean 3.0 (см. скриншот 8 – рабочее окно программы): устранение всевозможных потрескиваний и шумов, режим автокоррекции, набор эффектов для обработки скорректированного звука, включая функцию «surround sound» с наглядным акустическим моделированием эффекта, запись CD с подготовленными данными, «интеллигентная» система подсказок, поддержка внешних VST плаг-инов и другие возможности.

скриншот 8

Трекеры. Трекеры – это отдельная категория звуковых программ, предназначенных именно для создания музыки. Ранее мы рассмотрели два принципиально отличных способа хранения звуковых данных (музыки): первый - хранение звука в виде сжатого или несжатого потока аудио, второй - хранение музыки в виде MIDI-файлов (в виде набора команд MIDI-синтезатору). Структура и концепция построения трекерных файлов очень похожа на принцип хранения MIDI-информации. В трекерных модулях (файлы, созданные в трекерах, принято называть модулями), также, как и в MIDI-файлах, содержится партитура в соответствии с которой должны проигрываться инструменты. Кроме того, в них содержится информация о том, какие эффекты и в какой момент времени должны быть применены при проигрывании того или иного инструмента. Однако, принципиальное отличие трекерных модулей от MIDI-файлов заключается в том, что проигрываемые в этих модулях инструменты (или, точнее сказать, сэмплы) хранятся в самих модулях (то есть внутри файлов), а не в синтезаторе (как это происходит в случае с MIDI). Такой способ хранения музыки имеет массу преимуществ: размер файлов невелик по сравнению с непрерывной оцифрованной музыкой (поскольку записываются только использованные инструменты и партитура в виде команд), нет зависимости звучания от компьютера, на котором происходит воспроизведение (в MIDI, как мы говорили, есть зависимость звучания от используемого синтезатора), имеется большая свобода творчества, поскольку автор музыки не ограничен наборов инструментов (как в MIDI), а может использовать в качестве инструмента любой оцифрованный звук. Основные программы-трекеры Scream Tracker, Fast Tracker, Impulse Tracker, OctaMED SoundStudio, MAD Tracker, ModPlug Tracker.

Программа ModPlug Tracker является сегодня одним из тех трекеров, сумевших стать универсальной рабочей средой для множества типов трекерных модулей (см. скриншот 7 – пример рабочего окна программы, на экране: содержание дорожек одного загруженного модуля и рабочее окно сэмплов другого модуля). Основные возможности: поддержка до 64 физических каналов аудио, поддержка почти всех существующих форматов трекерных модулей, импорт инструментов во множестве форматов, 32-битное внутреннее микширование, высококачественный ресэплирующий фильтр, поддержка MMX/3dNow!/SSE, автоматическое удаление потрескиваний, расширение басов, ревербератор, расширение стерео, 6-полосный графический эквалайзер и другие возможности.

скриншот 7

На последок следует упомянуть о существовании огромного количества другого аудио ПО: проигрыватели аудио (наиболее выдающиеся: WinAMP, Sonique, Apollo, XMPlay, Cubic Player), подключаемые модули для проигрывателей (из «улучшателей» звучания аудио - DFX, Enhancer, iZotop Ozone), утилиты для копирования информации с аудио CD (ExactAudioCopy, CDex, AudioGrabber), перехватчики аудио потоков (Total Recorder, AudioTools), кодеры аудио (кодеры MP3: Lame encoder, Blade Encoderб Go-Go и другие; кодеры VQF: TwinVQ encoder, Yamaha SoundVQ, NTT TwinVQ; кодеры AAC: FAAC, PsyTel AAC, Quartex AAC), конвертеры аудио (для перевода аудио информации из одного формата в другой), генераторы речи и множество других специфических и общих утилит. Безусловно, все перечисленное – только малая толика из того, что может пригодиться при работе со звуком.

 




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 1022; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.