Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Истечение газов и паров. Особенности и характеристика режима истечения. Конфузор, диффузор, сопло Лаваля




Конфузор - сужающийся участок трубопровода, в котором происходит увеличение скорости потока жидкости или газа.

Диффузор - расширяющийся участок трубопровода, в котором происходит уменьшение скорости потока жидкости или газа.

Сопло Лаваля - техническое приспособление, которое служит для ускорения газового потока проходящего по нему до скоростей превышающих скорость звука. Широко используется на некоторых типах паровых турбин и является важной частью современных ракетных двигателей и сверхзвуковых реактивных авиационных двигателей.

Сопло представляет собой канал, суженный в середине. В простейшем случае такое сопло может состоять из пары усечённых конусов, сопряжённых узкими концами. Эффективные сопла современных ракетных двигателей профилируются на основании специальных газодинамических расчётов.

Сопло было предложено в 1890 г. шведским изобретателем Густафом де Лавалем для паровых турбин.

В ракетном двигателе сопло Лаваля впервые было использовано американским инженером Робертом Годдардом в 1919 г.

Феномен ускорения газа до сверхзвуковых скоростей в сопле Лаваля был обнаружен в конце XIX в. экспериментальным путём. Позже это явление нашло теоретическое объяснение в рамках газовой динамики.

При анализе течения газа в сопле Лаваля принимаются следующие допущения:

1. Газ считается идеальным.

2. Газовый поток является изоэнтропным (то есть имеет постоянную энтропию, силы трения и диссипативные потери не учитываются) и адиабатическим (то есть теплота не подводится и не отводится).

3. Газовое течение является стационарнымым и одномерным, то есть в любой фиксированной точке сопла все параметры потока постоянны во времени и меняются только вдоль оси сопла, причём во всех точках выбранного поперечного сечения параметры потока одинаковы, а вектор скорости газа всюду параллелен оси симметрии сопла.

4. Массовый расход газа одинаков во всех поперечных сечениях потока.

5. Влиянием всех внешних сил и полей (в том числе гравитационного) пренебрегается.

6. Ось симметрии сопла является пространственной координатой x.

7. Отношение локальной скорости v к локальной скорости звука C обозначается числом Маха, которое также понимается местным, то есть зависимым от координаты x:

(1)

Из уравнения состояния идеального газа следует: , эдесь ρ - локальная плотность газа, p — локальное давление. С учётом этого, а также с учётом стационарности и одномерности потока уравнение Эйлера принимает вид:

,

что, учитывая (1), преобразуется в . (2)

Уравнение (2) является ключевым в данном рассуждении.
Рассмотрим его в следующей форме:

(2.1)

 

Величины и характеризуют относительную степень изменяемости по координате x плотности газа и его скорости соответственно. Причем уравнение (2.1) показывает, что соотношение между этими величинами равно квадрату числа Маха (знак минус означает противоположную направленность изменений: при возрастании скорости плотность убывает). Таким образом, на дозвуковых скоростях (M < 1) плотность меняется в меньшей степени, чем скорость, а на сверхзвуковых (M > 1) - наоборот. Как будет видно дальше, это и определяет сужающуюся-расширяющуюся форму сопла.

Поскольку массовый расход газа постоянен:

,

где A - площадь местного сечения сопла,

,

дифференцируя обе части этого уравнения по x, получаем:

После подстановки из (2) в это уравнение, получаем окончательно:

(3)

Заметим, что при увеличении скорости газа в сопле, выражение: положительно и, следовательно, знак производной определяется знаком выражения: (M2 − 1)

Из чего можно сделать следуюшие выводы:

При дозвуковой скорости движения газа (M < 1), производная - сопло суживается.

При сверхзвуковой скорости движения газа (M > 1), производная - сопло расширяется.

При движении газа со скоростью звука (M = 1), производная - площадь поперечного сечения достигает экстремума, то есть имеет место самое узкое сечение сопла, называемое критическим.

Итак, на сужающемся, докритическом участке сопла движение газа происходит с дозвуковыми скоростями. В самом узком, критическом сечении сопла локальная скорость газа достигает звуковой. На расширяющемся, закритическом участке, газовый поток движется со сверхзвуковыми скоростями.
Перемещаясь по соплу, газ расширяется, его температура и давление падают, а скорость возрастает. Внутренняя энергия газа преобразуется в кинетическую энергию его направленного движения. КПД этого преобразования в некоторых случаях (например, в соплах современных ракетных двигателей) может превышать 70 %, что значительно превосходит КПД реальных тепловых двигателей всех других типов. Это превосходство имеет объяснение. Во-первых, рабочее тело не передаёт механическую энергию никакому посреднику (поршню или лопастям турбины), а в реальных тепловых двигателях на этой передаче имеют место большие потери. Во-вторых, газ проходит через сопло так быстро, что не успевает отдать заметное количество своей тепловой энергии через теплоотдачу стенкам сопла, что позволяет считать процесс адиабатическим. У реальных тепловых двигателей других типов нагрев конструкции составляет существенную часть потерь. Автомобильный двигатель, например, работает больше на радиатор охлаждения, чем на выходной вал.

Из уравнения состояния идеального газа, и баланса энергии в газовом потоке выводится формула расчёта линейной скорости истечения газа из сопла Лаваля:[1]

(4)

где:

ve - Скорость газа на выходе из сопла, м/с;

T - Абсолютная температура газа на входе;

R - Универсальная газовая постоянная R=8314,5 Дж/(киломоль*К);

M - молярная масса газа, кг/киломоль;

k - Показатель адиабаты k = cp / cv;

cp - Удельная теплоемкость при постоянном давлении, Дж/(киломоль*К);

cv - Удельная теплоемкость при постоянном объеме, Дж/(киломоль*К);

pe - Абсолютное давление газа на выходе из сопла, Па;

p - Абсолютное давление газа на входе в сопло, Па.

При работе сопла Лаваля в непустой среде (чаще всего речь идет об атмосфере) сверхзвуковое течение может возникнуть только при достаточно большом избыточном давлении газа на входе в сопло по сравнению с давлением окружающей среды.

При возникновении сверхзвукового течения давление газа на выходном срезе сопла может оказаться даже меньше давления окружающей среды (вследствие перерасширения газа при движении по соплу). Такой поток может оставаться стабильным, поскольку давление окружающей среды (пока оно не на много превышает давление газа на срезе сопла) не может распространяться против сверхзвукового потока.

В общем случае удельный импульс сопла Лаваля (при работе как в среде, так и в пустоте) определяется выражением:

(5)

Здесь ve - скорость истечения газа из сопла, определяемая по формуле (4); Ae - площадь среза сопла; pe - давление газа на срезе сопла; p0 - давление окружающей среды; - секундный массовый расход газа через сопло.
Из выражения (5) следует, что удельный импульс и, соответственно, тяга ракетного двигателя в пустоте (при p0=0) всегда выше, чем на поверхности Земли. Это находит отражение в характеристиках реальных ракетных двигателей: обычно для двигателей, работающих в атмосфере, указываются по два значения для удельного импулься и тяги - в пустоте и на Земле (например, РД-107).

Зависимость характеристик двигателя от давления газа на срезе сопла pe носит более сложный характер: как следует из уравнения (4), ve растёт с убыванием pe, а добавка - убывает, и при pe < p0 становится отрицательной.
При фиксированном расходе газа и давлении на входе в сопло величина pe зависит только от площади среза сопла, которую обычно характеризуют относительной величиной - степенью расширения сопла - отношением площади конечного среза к площади критического сечения. Чем больше степень расширения сопла, тем меньше давление pe, и тем больше скорость истечения газа ve.

Рассматривая соотношение давления на срезе сопла и давления окружающей среды, выделяют следующие случаи.

pe = p0 - оптимальный режим расширения сопла, при котором удельный импульс достгает максимального значения (при прочих равных условиях). При этом, как следует из уравнения (5), импульс становится численно равным скорости истечения газа ve.

pe < p0 - режим перерасширения. Уменьшение степени расширения сопла (несмотря на уменьшение скорости истечения газа) приведёт к увеличению удельного импульса. При проектировании ракетных двигателей первых ступеней ракет конструкторы часто сознательно идут на перерасширение, поскольку с набором ракетой высоты атмосферное давление падает, уравнивается с давлением на срезе сопла, и удельный импульс двигателя возрастает. Таким образом, жертвуя тягой в начале полёта, получают преимущество на последующих его стадиях, что, как показывают расчёты и практика, в сумме даёт выигрыш в конечной скорости ракеты.

Однако, при значительном превышении давления окружающей среды над давлением в газовом потоке, в нём возникает обратная ударная волна, которая распространяется против потока со сверхзвуковой скоростью, тем большей, чем больше перепад давления на её фронте, что приводит к срыву сверхзвукового течения газа в сопле (полному или частичному). Это явление может явиться причиной автоколебательного процесса, когда сверхзвуковое движение газа в сопле периодически возникает и срывается с частотой от нескольких герц до десятков герц. Для сопел ракетных двигателей, в которых происходят процессы большой мощности, эти автоколебания являются разрушительными, не говоря о том, что эффективность двигателя в таком режиме резко пвдает. Это накладывает ограничение на степень расширения сопла, работающего в атмосфере.

pe > p0 - режим недорасширения. Недорасширение означает, что не вся внутренняя энергия газа израсходована на его ускорение и, увеличив степень расширения сопла, можно добиться увеличения скорости истечения газа и удельного импульса. В пустоте (при p0=0) полностью избежать недорасширения невозможно.

Рис. 1. Схема подвижного соплового насадка.

 

Неограниченное увеличение степени расширения сопла асимптотически приближает скорость истечения газа к пределу, определяемому его внутренней энергией, при этом увеличивается длина, диаметр выходного сечения, и, следовательно, вес сопла. Конструктор сопла, работающего в пустоте, должен принять решение: при какой степени расширения дальнейшее увеличение размера и веса сопла не стоит того увеличения скорости истечения, которое может быть достигнуто в результате. Такое решение принимается на основании всестороннего рассмотрения функционирования всего аппарата в целом.

Вышесказанное объясняет то обстоятельство, что ракетные двигатели, работающие в плотных слоях атмосферы, как правило, имеют степень расширения меньшую, чем двигатели, работающие в пустоте. Например, у двигателя F-1 первой ступени носителя Сатурн-5 степень расширения составляет 16:1, а RL 10B-2 - двигатель, используемый NASA на ускорителях межпланетных зондов, имеет степень расширения равную 250:1.

Стремление добиться эффективной работы двигателя как на Земле, так и на высоте заставляет конструкторов искать технические решения, позволяющие достигнуть эту цель. Одним из таких решений явился подвижный сопловой насадок - «продолжение» сопла, которое пристыковывается к нему по достижении ракетой разреженных слоёв атмосферы, увеличивая, таким образом, степень расширения сопла. Схема действия насадка изображена на рисунке 1. Здесь (1) - собственно сопло Лаваля; (2) - сопловой насадок; А - положение насадка при работе в нижних, наиболее плотных, слоях атмосферы; В - положение насадка на большой высоте. Эта схема была практически реализована в конструкции двигателя НК-33-1.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 7511; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.026 сек.