Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм цифровой подписи DSА




Алгоритм цифровой подписи DSА (Digital Signature Algorithm) предложен в 1991 г. в НИСТ США для использования в стандарте цифровой подписи DSS (Digital Signature Standard). Алгоритм DSА является развитием алгоритмов цифровой подписи Эль Гамаля и К.Шнорра.

Отправитель и получатель электронного документа используют при вычислении большие целые числа: G и Р - простые числа, L бит каждое (512 £ L £ 1024); q - простое число длиной 160 бит (делитель числа (Р-1)). Числа G, Р, q являются открытыми и могут быть общими для всех пользователей сети.

Отправитель выбирает случайное целое число X, 1 < Х < q. Число Х является секретным ключом отправителя для формирования электронной цифровой подписи.

Затем отправитель вычисляет значение

Y = GX mod Р.

Число Y является открытым ключом для проверки подписи отправителя и передается всем получателям документов.

Этот алгоритм также предусматривает использование односторонней функции хэширования h(·). В стандарте DSS определен алгоритм безопасного хэширования SНА (Secure Hash Algorithm).

Для того чтобы подписать документ М, отправитель хэширует его в целое хэш-значение m:

m = h(М), 1<m<q,

затем генерирует случайное целое число К, 1< К< q, и вычисляет число r:

r = (GK mod Р) mod q.

Затем отправитель вычисляет с помощью секретного ключа Х целое число s:

s = ((m + r * X)/K) mod q.

Пара чисел (r,s) образует цифровую подпись

S = (r,s)

под документом М.

Таким образом, подписанное сообщение представляет собой тройку чисел (М,r,s).

Получатель подписанного сообщения (М,r,s) проверяет выполнение условий

0 < r < q, 0 < s < q

и отвергает подпись, если хотя бы одно из этих условий не выполнено. Затем получатель вычисляет значение

w = (1/s) mod q,

хэш-значение

m = h(М)

и числа

u1 = (m * w) mod q,

u2 = (r * w) mod q.

Далее получатель с помощью открытого ключа Y вычисляет значение

v = ((Gu1 * Yu2) mod Р) mod q

и проверяет выполнение условия

v = r.

Если условие v = r выполняется, тогда подпись S=(r,s) под документом М признается получателем подлинной.

Можно строго математически доказать, что последнее равенство будет выполняться тогда, и только тогда, когда подпись S=(r,s) под документом М получена с помощью именно того секретного ключа X, из которого был получен открытый ключ Y. Таким образом, можно надежно удостовериться, что отправитель сообщения владеет именно данным секретным ключом Х (не раскрывая при этом значения ключа X) и что отправитель подписал именно данный документ М.

По сравнению с алгоритмом цифровой подписи Эль Гамаля алгоритм DSА имеет следующие основные преимущества:

1. При любом допустимом уровне стойкости, т.е. при любой паре чисел G и Р (от 512 до 1024 бит), числа q, X, r, s имеют длину по 160 бит, сокращая длину подписи до 320 бит.

2. Большинство операций с числами К, r, s, Х при вычислении подписи производится по модулю числа q длиной 160 бит, что сокращает время вычисления подписи.

3. При проверке подписи большинство операций с числами u1, u2, v, w также производится по модулю числа q длиной 160 бит, что сокращает объем памяти и время вычисления.

Недостатком алгоритма DSА является то, что при подписывании и при проверке подписи приходится выполнять сложные операции деления по модулю q:

s = ((m + rX)/K) (mod q), w = (1/s) (mod q),

что не позволяет получать максимальное быстродействие.

Следует отметить, что реальное исполнение алгоритма DSА может быть ускорено с помощью выполнения предварительных вычислений. Заметим, что значение r не зависит от сообщения М и его хэш-значения m. Можно заранее создать строку случайных значений К и затем для каждого из этих значений вычислить значения r. Можно также заранее вычислить обратные значения К-1 для каждого из значений К. Затем, при поступлении сообщения М, можно вычислить значение s для данных значений r и К-1. Эти предварительные вычисления значительно ускоряют работу алгоритма DSА.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.