Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Трещины. При разрушении однородных тел процесс образования и разви­тия трещины зависит от типа деформации




При разрушении однородных тел процесс образования и разви­тия трещины зависит от типа деформации. Схема основных час­тей трещины и их различные типы представлены на рис. 11.9,11.10.

Для наглядности в вершине трещины (рис. 11.10) помещена трехмерная система координат. Если деформация определяется си­лами, ориентированными по направлению ОУ, то края трещины симметрично расходятся в противоположных направлениях (I тип).

Если края трещины и ее поверхности скользят друг по другу в направлении ОХ (поперек фронта трещины), то возникают де­формации поперечного сдвига (II тип).

В случае, когда края и поверхность трещины движутся относи­тельно друг друга в направлении OZ (т. е. вдоль фронта трещины,


параллельно ему) формируются деформации продольного сдвига (III тип).

Зарождение трещины и ее рост приводят к изменению конст­рукционных качеств деформируемого тела и могут закончится раз­рушением тела.

Ниже для примера рассмотрены повреждения, характерные для длинных трубчатых костей. Разрушения таких костей можно


 


рассматривать как разрушения стержня при воздействии нагру­зок в продольном или поперечном направлениях.

Продольные нагрузки (сжатие) возникают, например, при па­дении на кисть вытянутой руки, на руку, согнутую в локтевом сус­таве или на согнутое колено (рис. 11.11).

В спортивной практике часто имеет место повреждение костей вследствие их изгиба под влиянием внешнего воздействия. Зона начала разрушения диафиза длинной трубчатой кости при изгибе располагается на выпуклой стороне (рис. 11.12.) дуги, где сосре­дотачиваются наибольшие значения растягивающих напряжений.


Другой вид повреждений больших трубчатых костей, сопровож­дающийся множественными переломами, возникает при ударе тупым предметом (рис. 11.13).

11.6. Механические свойства биологических тканей

Структура материала является главным фактором, опреде­ляющим его механические свойства и характер процесса разруше­ния. Большинство биологических тканей являются анизотропными композитными материалами, образованными объемным сочета­нием химически разнородных компонентов. Состав каждого типа ткани сформировался в процессе эволюции и зависит от функций, которые она выполняет.

Костная ткань

Кость — основной материал опорно-двигательного аппарата. Так, в скелете человека более 200 костей. Скелет является опорой тела и способствует передвижению (отсюда и произошел термин «опорно-двигательный аппарат»). У взрослого человека скелет ве­сит около 12 кг (18% общего веса).

В компактной костной ткани половину объема составляет неор­ганический материал, минеральное вещество кости — гидрокси-лапатит. Это вещество представлено в форме микроскопических


кристалликов. Другая часть объема состоит из органического ма­териала, главным образом коллагена (высокомолекулярное со­единение, волокнистый белок, обладающий большой эластично­стью). Способность кости к упругой деформации реализуется за счет минерального вещества, а ползучесть — за счет коллагена.

Кость является армированным композиционным материалом. Например, кости нижних конечностей армированы высокопрочны­ми волокнами в окружных и спиральных перекрещивающихся направлениях.

Механические свойства костной ткани зависят от многих фак­торов: возраста, заболевания, индивидуальных условий роста. В норме плотность костной ткани 2400 кг/м3. Модуль Юнга Е = 10'°Па, предел прочности при растяжении оп = 100 МПа, от­носительная деформация достигает 1 %.

При различных способах деформирования (нагружения) кость ведет себя по-разному. Прочность на сжатие выше, чем на растя­жение или изгиб. Так, бедренная кость в продольном направлении выдерживает нагрузку 45000 Н, а при изгибе — 2500 Н.

Запас механической прочности кости весьма значителен и за­метно превышает нагрузки, с которыми она встречается в обычных жизненных условиях.


Вся архитектоника костной ткани идеально соответствует опор­ной функции скелета, ориентация костных перекладин параллельна линиям основных напряжений, что позволяет кости выдерживать большие механические нагрузки. Так, например, в головке бедрен­ной кости под каждую нагрузку формируется своя структура — так называемая ферма Мичелла. Все эти фермы связаны между собой и образуют сложную структуру (рис. 11.14).

Одной из важных особенностей конструкции костей скелета яв­ляется галтельность, т. е. скругление внутренних и внешних углов. Галтельность повышает прочность и снижает внутренние напря­жения в местах резкого перехода.

Кости обладают различной прочностью в зависимости от функ­ции, которую выполняют. Бедренная кость в вертикальном поло­жении выдерживает нагрузку до 1,5 т, а большая берцовая кость до 1,8 т (это в 25—30 раз больше веса нормального человека).

Установлено, что в соответствии с выполнением физиологи­ческих задач по реализации опорных и локомоторных функций согласно распределению силовых нагрузок в костях формируются зоны разной твердости. На рис. 11.15 приведена схема топогра­фии разнотвердостных зон в одном из поперечных сечений боль-шеберцовой кости.


 




 


 





Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 461; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.