КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Нормализация отношений. Четвертая нормальная форма
Нормализация отношений. Нормальная форма Бойса-Кодда. На практике третья нормальная форма устраняет большинство аномалий схем таблиц-отношений, а также ситуации дублирования данных, и после декомпозиции исходных таблиц отношений до третьей нормальной формы процесс нормализации заканчивается. Вместе с тем в некоторых случаях третью нормальную форму можно также "улучшить", в частности приведением таблицы-отношения в нормальную форму Бойса-Конда. Такие ситуации связаны с наличием так называемых детерминантов – совокупности атрибутов (составных атрибутов), от которых функционально полно зависят другие атрибуты. В результате таблица может находиться в третьей нормальной форме, т.е. все его неключевые атрибуты взаимно функционально независимы, но имеется полная функциональная зависимость некоторых атрибутов от совокупности других атрибутов (детерминантов). Пример приведения таблицы из третьей нормальной формы в форму Бойса-Кодда: Исходная таблица в третьей нормальной форме
Декомпозиция для удовлетворения требованиям нормальной формы Бойса-Кодда
В данной таблице имеются два детерминанта – («Лич. № сотр.», «Операция») и («Фамилия», «Операция»), от каждого из которых функционально полно зависит поле-атрибут «Мероприятие». Таблица-отношение находится в нормальной форме Бойса-Кодда тогда и только тогда, когда каждый его детерминант является возможным ключом. Очевидно, что если в таблице имеется всего один возможный ключ, то он одновременно является детерминантом, и нормальная форма Бойса-Кодда совпадает с третьей нормальной формой. Поэтому иногда нормальную форму Бойса-Кодда считают частным случаем третьей нормальной формы. Встречаются также случаи, требующие «улучшения» и нормальной формы Бойса-Кодда. Такие ситуации связаны с многозначной зависимостью атрибутов.
Таблица-отношение находится в четвертой нормальной форме тогда и только тогда, когда в случае существования многозначной зависимости атрибута Y от атрибута X все остальные атрибуты функционально зависят от атрибута X. Пример декомпозиции таблицы из нормальной формы Бойса-Кодда в четвертую нормальную форму: Исходная таблица в нормальной форме Бойса-Кодда
Декомпозиция таблицы для выполнения требований четвертой нормальной формы
Исходя из примера, будем считать, что каждый сотрудник, привлеченный к какой-либо операции, в обязательном порядке участвует во всех проводимых в рамках данной операции мероприятиях. В этом случае единственно возможным ключом является совокупность всех трех полей-атрибутов (каждый сотрудник может участвовать в разных операциях, в одной операции может участвовать несколько сотрудников). Т.к. имеется единственный возможный составной ключ, то данная таблица автоматически находится в нормальной форме Бойса-Кодда. При этом имеется многозначная зависимость поля-атрибута «Фамилия» от поля-атрибута «Операция» (для любой пары значений атрибутов «Операция» – «Мероприятие» значение атрибута «Фамилия» фактически определяется только значением атрибута «Операция» при сформулированном выше условии участия каждого сотрудника автоматически во всех мероприятиях данной операции). В такой ситуации для внесения информации о новом сотруднике, вовлекаемом в какую-либо операцию, придется добавить столько строк-кортежей, сколько мероприятий проводится в рамках данной операции. Приведение таблицы в четвертую нормальную форму основывается на теореме Фейджина, в которой доказывается возможность проецирования без потерь таблицы с атрибутами X, Y, Z в две таблицы с атрибутами X, Y и X, Z, когда существует многозначная зависимость атрибута Y от атрибута X.
Дата добавления: 2015-05-09; Просмотров: 732; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |