Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Розповсюдження радіохвиль




Найпростіший випадок — це розповсюдження радіо хвилі у вільному просторі. Вже на невеликій відстані від радіопередавача його можна вважати крапкою. А якщо так, то фронт радіохвилі можна вважати сферичним. Якщо ми проведемо в думках декілька сфер, що оточують радіопередавач, то ясно, що за відсутності поглинання енергія, що проходить через сфери, залишатиметься незмінною. Ну, а поверхня сфери пропорційна квадрату радіусу. Означає, інтенсивність хвилі, тобто енергія, що доводиться на одиницю площі в одиницю часу, падатиме у міру видалення від джерела обернено пропорційно до квадрата відстані.

Звичайно, це важливе правило застосовно в тому випадку, якщо не вжиті спеціальні заходи для того, щоб створити вузьконаправлений потік радіохвиль.

Існують різні технічні прийоми для створення направлених радіопроменів. Один із способів рішення цієї задачі полягає у використанні правильних грат антен. Антени повинні бути розташовані так, щоб послані ними хвилі відправлялися в потрібному напрямі “горб до горба”. Для цієї ж мети використовуються дзеркала різної форми.

Радіохвилі, мандрівні в космосі, відхилятимуться від прямолінійного напряму — відображатися, розсіватися, заломлюватися — в тому випадку, якщо на їх шляху зустрінуться перешкоди, сумірні з довжиною хвилі і навіть дещо менші.

Найбільший інтерес представляє для нас поведінка хвиль, що йдуть близько із земної поверхні. У кожному окремому випадки картина може бути вельми своєрідною, залежно від того, яка довжина хвилі.

Кардинальну роль грають електричні властивості землі і атмосфери. Якщо поверхня здатна проводити струм, то вона “не відпускає” від себе радіохвилі. Електричні силові лінії електромагнітного поля підходить до металу (ширше — до будь-якого провідника) під прямим кутом.

Тепер уявіть собі, що радіопередача відбувається поблизу морської поверхні. Морська вода містить розчинені солі, тобто є електролітом. Морська вода — чудовий провідник струму. Тому вона “тримає” радіохвилю, примушує її рухатися уздовж поверхні моря.

Але і рівнинна, а так само лісиста місцевості є хорошими провідниками для струмів не дуже високої частоти. Іншими словами, для довгих хвиль ліс рівнина поводяться як метал.

Тому довгі хвилі утримуються всією земною поверхнею і здатна осягнути земну кулю. До речі кажучи, цим способом можна визначити швидкість радіохвиль. Радіотехнікам відомо, що на те, щоб осягнути земну кулю, радіохвиля витрачає 0.13 с. А як же гори? Ну що ж, для довгих хвиль вони не так вже високі, і радіохвиля завдовжки в кілометр більш менш здатна осягнути гору.

Що ж до коротких хвиль, то можливість дальнього радіоприйому на цих хвилях зобов'язана наявності над Землею іоносфери. Сонячні промені володіють здатністю руйнувати молекули повітря у верхніх областях атмосфери. Молекули перетворюються на іони і на відстанях 100-300 км від землі утворюють декілька заряджених шарів. Отже для коротких хвиль простір, в якому рухається хвиля, — це шар діелектрика, затиснутого між двома провідними поверхнями.

Оскільки рівнинна і лісиста поверхні не є хорошими провідниками для коротких хвиль те вони не здатні їх утримати. Короткі хвилі відправляються у вільну подорож, але натикаються на іоносферу, що відображає їх, як поверхня металу.

Іонізація іоносфери не однорідна і, звичайно, різна вдень і вночі. По цьому шляху коротких радіохвиль можуть бути самими різними. Вони можуть дістатися до вашого радіоприймача і після багатократних віддзеркалень із Землею і іоносферою. Доля короткої хвилі залежить від того, під яким кутом потрапляє вона на іоносферний шар. Якщо цей кут близький до прямого, то віддзеркалення не відбудеться і хвиля піде в світовий простір. Але частіше має місце повне віддзеркалення і хвиля повертається на Землю.

Для ультракоротких хвиль іоносфера прозора. Тому на цих довжинах хвиль можливий радіоприйом в межах прямої видимості або за допомогою супутників. Направляючи хвилю на супутник, ми можемо ловити відбиті від нього сигнали на величезних відстанях.

Супутники відкрили нову епоху в техніки радіозв'язку, забезпечивши можливість радіоприйому і телевізійного прийому на ультракоротких хвилях.

Цікаві можливості надає передача на сантиметрових, міліметрових і субміліметрових хвилях. Хвилі цієї довжини можуть поглинатися атмосферою. Але, виявляється, є ”вікна”, і, підібравши потрібним чином довжину хвилі, можна використовувати хвилі, що залізають в оптичний діапазон. Ну, а достоїнства цих хвиль нам відомі: у малій хвилевий інтервал можна “вкласти” величезне число передач, що не перекриваються.

Як розповсюджуються радіохвилі

Радіохвилі випромінюються через антену в простір і розповсюджуються у вигляді енергії електромагнітного поля. І хоча природа радіохвиль однакова, їх здібність до розповсюдження сильно залежить від довжини хвилі.
Земля для радіохвиль представляє провідник електрики (хоч і не дуже хороший). Проходячи над поверхнею землі, радіохвилі поступово слабшають. Це пов'язано з тим, що електромагнітні хвилі порушують в поверхні землі електрострум, на що і витрачається частина енергії. Тобто енергія поглинається землею, причому тим більше, чим коротше довжина хвиля (вище частота). Крім того, енергія хвилі слабшає ще і тому, що випромінювання розповсюджується на всі боки простори і, отже, чим далі від передавача знаходиться приймач, тим менша кількість енергії доводиться на одиницю площі і тим менше за неї потрапляє в антену.

Передачі довгохвильових мовних станцій можна приймати на відстані до декількох тисяч кілометрів, причому рівень сигналу зменшується плавно, без стрибків. Середньохвильові станції чутні в межах тисячі кілометрів. Що ж до коротких хвиль, то їх енергія різко убуває у міру видалення від передавача. Цим пояснюється той факт, що на зорі розвитку радіо для зв'язку в основному застосовувалися хвилі від 1 до 30 км. Хвилі коротше 100 метрів взагалі вважалися непридатними для телекомунікації.

Проте подальші дослідження коротких і ультракоротких хвиль показали, що вони швидко затухають, коли йдуть у поверхні Землі. При напрямі випромінювання вгору, короткі хвилі повертаються назад.
Ще в 1902 англійського математика Олівер Хевісайд (Oliver Heaviside) і американський інженер-електрик Артур Едвін Кеннеллі (Arthur Edwin Kennelly) практично одночасно передбачили, що над Землею існує іонізований шар повітря – природне дзеркало, що відображає електромагнітні хвилі. Цей шар був названий іоносферою. Іоносфера Землі повинна була дозволити збільшити дальність розповсюдження радіохвиль на відстані, що перевищують пряму видимість. Експериментально це припущення було доведено в 1923. Радіочастотні імпульси передавалися вертикально вгору і приймалися сигнали, що повернулися. Вимірювання часу між посилкою і прийомом імпульсів дозволили визначити висоту і кількість шарів віддзеркалення.

Відобразившись від іоносфери, короткі хвилі повертаються до Землі, залишивши під собою сотні кілометрів «мертвої зони». Долетівши до іоносфери і назад, хвиля не «заспокоюється», а відображається від поверхні Землі і знов спрямовується до іоносфери, де знову відображається і т.д. Так, багато разів відображаючись, радіохвиля може кілька разів осягнути земну кулю.

Встановлено, що висота віддзеркалення залежить в першу чергу від довжини хвилі. Чим коротша хвиля, тим на більшій висоті відбувається її віддзеркалення і, отже, більше «мертва зона». Ця залежність вірна лише для короткохвильової частини спектру (приблизно до 25–30 Мгц). Для коротших хвиль іоносфера прозора. Хвилі пронизують її наскрізь і йдуть в космічний простір.

Радіохвилі УКВ діапазону по властивостях більшою мірою нагадують світлові промені. Вони практично не відображаються від іоносфери, дуже трохи огинають земну поверхню і розповсюджуються в межах прямої видимості. Тому дальність дії ультракоротких хвиль невелика. Але в цьому є певна перевага для радіозв'язку. Оскільки в діапазоні УКВ хвилі розповсюджуються в межах прямої видимості, то можна розташовувати радіостанції на відстані 150–200 км один від одного без взаємного впливу. А це дозволяє багато разів використовувати одну і ту ж частоту сусіднім станціям.
Властивості радіохвиль діапазонів ДЦВ і 800 Мгц ще ближчі до світлових променів і тому володіють ще однією цікавою і важливою властивістю. Пригадаємо, який влаштований ліхтарик. Світло від лампочки, розташованої у фокусі рефлектора, збирається у вузький пучок променів, який можна
послати в будь-якому напрямі. Приблизно те ж саме можна виконати і з високочастотними радіохвилями. Можна їх збирати дзеркалами-антенами і посилати вузькими пучками. Для низькочастотних хвиль таку антену побудувати неможливо, оскільки дуже великі були б її розміри (діаметр дзеркала повинен бути набагато більше, ніж довжина хвилі). Можливість направленого випромінювання хвиль дозволяє підвищити ефективність системи зв'язку.
Пов'язано це з тим, що вузький промінь забезпечує менше розсіювання енергії в побічних напрямах, що дозволяє застосовувати менш могутні передавачі для досягнення заданої дальності зв'язку. Направлене випромінювання створює менше перешкод іншим системам зв'язку, що знаходяться не в створі променя.
При прийомі радіохвиль також можуть використовуватися достоїнства направленого випромінювання. Наприклад, багато хто знайомий з параболічними супутниковими антенами, що фокусують випромінювання супутникового передавача в крапку, де встановлений приймальний датчик. Застосування направлених приймалень антен в радіоастрономії дозволило зробити безліч фундаментальних наукових відкриттів. Можливість фокусування високочастотних радіохвиль забезпечила їх широке застосування в радіолокації, радіорелейному зв'язку, супутниковому віщанні, бездротовому

Необхідно відзначити, що із зменшенням довжини хвилі зростає їх загасання і поглинання в атмосфері. Зокрема на розповсюдження хвиль коротше 1 см починають впливати такі явища як туман, дощ, хмари, які можуть стати серйозною перешкодою, що сильно обмежує дальність зв'язку.
Ми з'ясували, що хвилі радіодіапазону володіють різними властивостями розповсюдження, і кожна ділянка цього діапазону застосовується там, де краще всього можуть бути використані його переваги.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 1735; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.