Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Взаимодействие природных




I


Ландшафт представляет собой довольно крупный (площадью в десятки и сотни квадратных километров) и сложный ПТК, состо­ящий из динамически сопряженных и закономерно повторяющихся в пространстве основных и второстепенных урочищ. Ландшафт об­ладает генетической однородностью, имеет одинаковый геологи­ческий фундамент, один тип рельефа и одинаковый климат, что и определяет специфику его морфологической структуры (набора и взаимного расположения морфологических единиц).

Все эти особенности ландшафта включены в его определе­ние, данное коллективом ландшафтной лаборатории МГУ: «Ланд­шафтэто генетически однородный природный территориальный комплекс, имеющий одинаковый геологический фундамент, один тип рельефа, одинаковый климат и состоящий из свойственного только данному ландшафту набора динамически сопряженных и закономер­но повторяющихся в пространстве основных и второстепенных уро­чищ» (Г. Н. Анненская и др., 1962. — С. 44). Уже в самом определе­нии намечен путь к практическому распознаванию ландшафтов, их изучению и картографированию, впервые указанный Н. А. Солн­цевым в 1947 г.


Основным диагностическим признаком ландшафта является его морфологическая структура, которая придает ландшафту характер­ный внешний облик (физиономические черты), позволяющий от­личать один ландшафт от другого. В связи с этим изучение любого ландшафта в поле должно начинаться с изучения его морфологи­ческой структуры. Такой подход позволяет не только вскрыть наи­более существенные особенности ландшафта и взаимосвязи между его составными частями, но и провести границы ландшафта. В от­личие от фаций и урочищ, границы которых обычно хорошо улав­ливаются визуально, ландшафты оконтуриваются, как правило, по характерному сочетанию урочищ на основании анализа его морфологической структуры, так как визуальное проведение гра­ниц комплекса, занимающего площадь в десятки и сотни квадрат­ных километров, оказывается весьма затруднительным, а подчас просто невозможным.

При работе в поле исследователь может быть уверен, что нахо­дится в пределах одного ландшафта до тех пор, пока видит одно­типное сочетание одних и тех же урочищ. Как только появляются новые урочища или изменяются закономерности размещения тех же самых урочищ, нужно быть очень внимательным, ибо где-то здесь проходит граница ландшафтов или их крупных морфологи­ческих частей — местностей. Чтобы окончательно решить вопрос о ранге разделяемых границей комплексов, нужно проанализиро­вать весь фактический материал, характеризующий территорию исследования.

Представляя собой систему взаимосвязанных сравнительно прос­тых ПТК (перечень которых может не исчерпываться рассмотрен­ными выше единицами), ландшафт в то же время сам является составной частью более сложных ПТК и в конечном счете частью географической оболочки. Из этого исходил, давая свое определе­ние ландшафта, А. Г. Исаченко: «Ландшафтэто генетически обо­собленная часть ландшафтной области, зоны и вообще всякой круп­ной региональной единицы, характеризующаяся однородностью как в зональном, так и в азональном отношении и обладающая индивиду­альной структурой и индивидуальным морфологическим строением» (1965, с. 117).

Зонально-азональная однородность находит свое выражение в общности фундамента ландшафта, макрорельефа и климата. Она включает и генетическое единство, так как лишь в результате всей предшествующей истории развития формируется современный облик ландшафта.

Таким образом, оба приведенных определения исходят из одних и тех же черт ландшафта и как бы дополняют друг друга. В 1991 г. А. Г. Исаченко дал близкое по смыслу краткое определение ланд­шафта, базирующееся на системном подходе: «Ландшафтгене­тически единая геосистема, однородная по зональным и азональным

37



признакам и заключающая в себе специфический набор сопряженных локальных геосистем» {с. 111).

Примером ландшафта может служить Дроковское предополье, расположенное на правом берегу р. Ипуть — притока Десны (рис. 5).

Ландшафт занимает в ряду соподчиненных ПТК особое узловое положение. Это отмечали в своих работах Н. А. Солнцев, А. А. Гри­горьев, А. Г. Исаченко, В.Б.Сочава и ряд других исследователей. Н. А. Солнцев считал ландшафт основной единицей географии, с


которой собственно и начинается система таксономических еди­ниц, а более мелкие, чем ландшафт, комплексы он называл мор­фологическими частями ландшафта.

А. А. Григорьеву принадлежит мысль о том, что зональность и азональность как основные закономерности дифференциации гео­графической оболочки прослеживаются лишь до уровня ландшаф­та. Позднее ее развивал А. Г. Исаченко, отмечая, что все более мел­кие ПТК обособляются в соответствии с местными закономерно­стями, изменяющимися от ландшафта к ландшафту.

Согласно В.Б.Сочаве, ландшафт (макрогеохора), с одной сто­роны, венчает ряд ПТК топологического уровня, а с другой — им начинается ряд единиц регионального уровня, а на стыке единиц регионального и планетарного уровня подобное ландшафту узло­вое положение занимает физико-географическая страна, или об­ласть, по терминологии В. Б. Сочавы.

Таким образом, в единой иерархической системе таксономи­ческих единиц намечаются три уровня организации — планетар­ный {глобальный), региональный и топологический {локальный), обус­ловленные разными закономерностями дифференциации геогра­фической оболочки на каждом из этих уровней. Это положение признается сейчас многими физико-географами. Наиболее резко против него выступал лишь Д.Л.Арманд (1975), считая, что при­рода нераздельна, а поэтому таксономическая система не имеет «площадок» или «основных единиц».

Закономерности физико-географической дифференциации на разных уровнях и ступенях выявлены еще далеко не достаточно, что приводит к параллельному созданию таксономических систем ПТК, отличающихся как по количеству ступеней, так и по их со-подчиненности.

В зависимости от масштаба работ в центре внимания исследова­теля могут быть не только ландшафты и их морфологические еди­ницы, но и более крупные природные территориальные комплек­сы: физико-географические районы, провинции, зоны (отрезки зон внутри равнинных стран, называемые часто зональными облас­тями) или горные области, физико-географические страны. Комп­лексы планетарного уровня вплоть до географической оболочки в целом вместе с аквальными комплексами также изучают физико-географы.

Разные уровни организации ПТК влияют и на специфику их исследования. Изучение ПТК топологического уровня (ландшафта и его морфологических единиц) базируется главным образом на первичной информации, собираемой непосредственно в поле, и ве­дется преимущественно индуктивным методом (от частного к об-Щему). Планетарный уровень исследования строится в основном на использовании метода дедукции (от общего к частному) и вто­ричной (переработанной и обобщенной) информации о всей гео-


графической оболочке в целом и об отдельных компонентных обо­лочках. Комплексы этого уровня изучаются в камеральных услови­ях. При изучении ПТК регионального уровня исследование ведет­ся путем сочетания дедуктивного (от более крупных единиц к бо­лее мелким, обособившимся в их пределах) и индуктивного (ана­лиза внутренней структуры изучаемых ПТК) методов и основыва­ется преимущественно на вторичной информации о различных ком­понентах природы и ПТК планетарного и топологического уров­ней. Исследование ПТК регионального уровня проводится пре­имущественно в камеральных условиях, доля полевых исследова­ний при этом сокращается по мере возрастания ранга изучаемых комплексов. Основным методом их изучения является физико-гео­графическое районирование.

В связи с тем что специфика более крупных ПТК определяется особенностями ландшафтов, их слагающих, изучение любых комп­лексов регионального уровня не может производиться на основе только компонентного анализа без внимательного рассмотрения ландшафтной структуры территории, раскрывающей степень раз­нообразия и внутреннее строение каждого региона.

В понятие структура ПТК входит не только состав его элементов, но и связи — вещественные, энергетические, информационные. Каждый ПТК обладает своей специфической структурой — устой­чивой упорядоченностью свойств, сохраняющейся при различных внутренних и внешних изменениях. Внутренние связи ПТК — свя­зи между его структурными (составными) частями, т.е. между ком­понентами природы и между входящими в его состав более мелки­ми комплексами — определяют целостность и индивидуальность ПТК. Внешние связи — это связи между соседними одноранговыми комплексами, между изучаемым комплексом и вмещающим его более сложным ПТК и т.д. Они обеспечивают связи изучаемого комплекса с окружающей средой.

Следовательно, каждый ПТК любой размерности — открытая система, получающая вещество, энергию и информацию извне (от своей среды, окружения) и передающая ее другим ПТК (геосисте­мам). Различают связи прямые и обратные (А. Д. Арманд, 1988). Обрат­ные связи в свою очередь делятся на положительные и отрицатель­ные. При положительных связях эффект внешнего воздействия уси­ливается системой и может привести к ее быстрому разрушению, ибо она сама работает на разрушение. Примером может служить об­разование лавин. Отсюда и выражение — лавинообразный процесс. При отрицательной обратной связи эффект внешнего воздействия ослабляется, «гасится» системой, а сама система продолжает оста­ваться в пределах своего инварианта (В.Б.Сочава, 1963). Отрица­тельные обратные связи — это сопротивление системы внешнему воздействию. Они обеспечивают устойчивость ПТК, его способ­ность оставаться самим собой, несмотря на внешние воздействия.


При вычленении ПТК необходимо руководствоваться как за­кономерностями внутренних взаимосвязей комплекса, создающих его качественную определенность, так и взаимодействиями изуча­емого комплекса с окружающими его ПТК.

Внутренние закономерности лучше прослеживаются при бли­жайшем рассмотрении и детальном изучении ПТК. Чтобы их по­знать, исследователь должен находиться внутри комплекса. А что­бы обнаружить его отличие от соседних комплексов, нужно взгля­нуть на него со стороны, сравнить с другими комплексами, охва­тить единым взглядом весь комплекс на фоне окружающих его ПТК. Долгое время такой «взгляд со стороны» оказывался возмож­ным лишь в отношении самых мелких ПТК — фаций, подурочищ и урочищ. В то же время достаточно крупные ПТК можно было изучать, лишь находясь внутри комплекса и не имея возможности взглянуть на него с некоторого расстояния, увидеть его на фоне окружающих ПТК.

Использование авиации позволило исследователям «подняться над» крупными урочищами, местностями и ландшафтами, следст­вием чего явилась большая объективность в проведении границ этих комплексов. И лишь выход человека за пределы географической обо­лочки, в Космос, позволил даже на такие крупные комплексы, как физико-географические страны, взглянуть «со стороны» как на части географической оболочки, увидеть их в сравнении друг с другом, в результате чего многие границы между довольно круп­ными и сложными ПТК, которые при наземных исследованиях считались переходными полосами, оказались хорошо заметными, четкими, линейными на аэрофото- и космоснимках.

Таким образом, сложность разграничения ПТК заключается в том, что исследователь должен одновременно учитывать множе­ство как внутренних, так и внешних связей комплекса.

Стремление глубже познать отдельные специфические черты ПТК или влияние определенного фактора на его особенности не­редко заставляет исследователя сосредоточить внимание на огра­ниченном наборе свойств и связей комплекса. В связи с этим по­явилось представление о различных структурах ПТК: простран­ственных, временных, функциональных и др. (Г.Гаазе, К.Г.Раман, Н.А. Солнцев, Э. М. Раковская и др.). Внутри каждой отдельной структуры связи теснее, чем между разными структурами. Именно этим и вызвано относительное обособление самих структур, их вычленение из сложного клубка разнообразных связей ПТК, от­носительная их самостоятельность. В то же время все структуры в ПТК тесно переплетены между собой, взаимосвязаны и взаимо­обусловлены. Они образуют не случайный конгломерат структур, а единую интегральную структуру. Благодаря ей и возникает каче­ственная определенность и пространственная ограниченность ПТК, его внутренняя упорядоченность и своеобразие. Эта сложная ин-


тегральная структура ПТК, включающая все многообразие его связей, может быть названа ландшафтной структурой (Э. М.Ра-ковская, 1980).

Сложность и многоплановость ландшафтной структуры созда­ют объективные предпосылки для возникновения разных направ­лений ее исследования, обусловливают необходимость сочетания различных аспектов изучения ландшафтной структуры для глубо­кого познания сущности ПТК, разработки научно обоснованных географических прогнозов и рекомендаций по рациональному ис­пользованию различных ПТК.

2.2. Природные аквальные комплексы

Природные аквальные комплексы (ПАК) — это прежде всего комплексы Мирового океана. На суше ПАК занимают сравнитель­но небольшую площадь.

Мировой океан — система глобальной размерности в суперси­стеме географической оболочки. Ландшафтная оболочка, представ­ляющая собой на суше более или менее единую тонкую пленку, в Мировом океане как бы раздваивается, образуя приповерхност­ные и придонные ПАК. Долгое время большие глубины считались безжизненными. Теперь известно существование как глубоковод­ных организмов, так и мигрирующих, способных погружаться на большие глубины. Сравнительно недавно был открыт особый мир «черных курильщиков» — подводных вулканов и источников тер­мальных вод, приуроченных в основном к срединным океаниче­ским хребтам и обладающих своими биоценозами, в числе кото­рых есть автотрофные хемосинтезирующие организмы. Тем не ме­нее следует отметить особую важность приповерхностных акваль-ных комплексов как среды обитания фотосинтезирующего фито­планктона — основы океанических трофических цепей.

Специфика природных аквальных комплексов. В отличие от ПТК, состоящих, по Н.А.Солнцеву, из пяти основных компонентов, в ПАК этот ряд сокращен. Геолого-геоморфологическая основа ока­зывает воздействие на аквальные комплексы открытого Океана только как глобальный или региональный фактор. Она может счи­таться компонентом лишь для придонных ПАК, в то время как ее влияние на другие локальные комплексы косвенное. Атмосфера как компонент отсутствует в придонных ПАК, хотя как внешний фактор очень важна для мелководных ПАК. С приповерхностными ПАК атмосфера имеет самый непосредственный контакт. Почва в ПАК отсутствует.

Водные массы — главнейший компонент ПАК. Основные пара­метры водных масс — температура, соленость (и их распределе­ние), количество растворенного кислорода и других газов, про-


зрачность, плотность, содержание элементов минерального пита­ния и органического (планктона), динамика водной среды. Дина­мика Океана тесно связана как с планетарными свойствами Земли (шарообразность, огромная масса, сила тяжести, параметры вра­щения и т.д.), так и с динамикой атмосферы. Известны приповерх­ностные, глубинные, донные, восходящие (апвеллинг) и нисходя­щие (даунвеллинг) течения, волновые перемещениях водных масс.

Вследствие этого ПАК намного динамичнее, чем ПТК. Даже геолого-геоморфологическая основа донных аквальных комплексов может быстро (иногда катастрофически) меняться, например во время штормов в прибрежной полосе, при наличии мутьевых тече­ний, во время весеннего половодья рек в подводных дельтах и т.д. Известны «кольца» Гольфстрима — течения, отделяющиеся от ос­новного и способные к автономному, относительно долгому су­ществованию. «Синоптические вихри» Мирового океана исследо­вались академиком Л. М. Бреховских. Динамические процессы по­всеместны и очень различны по характеру, скорости и изменяют­ся от места к месту. Поэтому, наблюдая тем или иным способом ПАК и пытаясь выявить его границы, фиксируют «сиюминутную» картину. Необходимо еще определить пределы пространственного изменения комплекса, его вариативность. Только массовые дан­ные могут дать представление о среднестатистических параметрах формы, размерности, размещения и внутреннего строения ПАК.

Фито- и зоокомпоненты распределены очень неравномерно: большое разнообразие и обилие в приповерхностных ПАК (на гра­ницах различных сред), на мелководьях, в зонах апвеллинга (подъе­ма глубинных вод к поверхности океана) и намного меньше на больших глубинах. Как и зеркальные отражения в воде, свойства водных систем во многом противоположны свойствам наземных. Симметрично их расположение относительно поверхности Земли. Максимальное количество зеленых растительных организмов при­урочено к «фокусной пленке» географической оболочки — среде раздела и взаимопроникновения компонентов и веществ разного агрегатного состояния. Здесь как бы сфокусированы солнечные лучи. Практически одинакова мощность фотосинтезирующего слоя: на суше от нескольких сантиметров до сотни метров (в джунглях) и в Океане от нескольких метров до 150 — 200 м. Максимальное коли­чество фитопланктона находится у поверхности и быстро (по экс­поненциальному закону) убывает с глубиной, так что трудно опре­делить этот рубеж.

Хотя теплые приэкваториальные воды, как и природные комп­лексы суши, отличаются большим разнообразием видов организ­мов, по количеству биомассы они вовсе не являются лидерами. Как раз в низких широтах находятся огромные «океанические пу­стыни» (рис. 6). Количество биомассы в океане имеет более высо­кие значения в высоких широтах — около 60-й параллели обоих




 


 


Рис. 6. Распределение биомассы (в сырой массе,

Океан: 1 — менее 0,01; 2 — от 0,01 до 0,02; 3 — от 0,02 до 0,03; 4 — от 0,03 до 0,05; (суша); 8— 0,5—1,0 (Океан) и 0,6—1,25 (суша); 9— 1,0—2,0 (Океан) и 1,25 — 3,12

12,5-37,5; 13 - от 37,5 до 75; 14 - от 75


кг/м2) на Земле (по И.А.Суетовой, 1973).

5~ от 0,05 до 0,1; 6— от 0,1 до 0,2. Океан, суша: 7— 0,2 — 0,5 (Океан) и менее 0,6 (суша); 10- более 2,0 (Океан) и 3,12-6,25 (суша). Суша: 11 - 6,25-12,5; 12 — До 100; 15 - от 100 до 125; 16 - более 125


полушарий и дальше, в приполярных бассейнах. Наивысшие ее значения — в северных шельфовых морях России и Канадского архипелага, в Беринговом море.

Поглощенные проблемами географии и экологии наземных си­стем, мы до сих пор слишком мало придаем значения таким осо­бенностям, как скорости биологических процессов в Океане. Фо-тосинтезирующие живые организмы — фактически единственный источник первичной пищевой продукции, в том числе для чело­века, составляют 99 % всей массы живого вещества Земли. Живое вещество Океана по массе составляет менее 0,2% от биомассы суши. Однако продуктивность Океана, т. е. производство биомассы в единицу времени и на единицу площади, примерно равна про­дуктивности наземных растений (Биогеохимия океана, 1983).

Обновление всей биосферы Земли осуществляется в среднем за 8 лет, а потому общая масса живого вещества (6,5 х 1027 г) за всю историю превышает массу Земли. При этом вещество наземных рас­тений (фитомасса суши) обновляется примерно за 44 года. В Океа­не циркуляция вещества происходит во много раз быстрее: вся масса живого вещества обновляется за 33 дня, в то время как фи­томасса Океана — каждый день! Следовательно, фитопланктон-ные организмы дают несколько поколений в сутки. Поэтому Н. А. Солнцев был не совсем прав, когда назвал биоту самым сла­бым компонентом. Тем не менее для суши такое определение име­ло свои веские основания.

Физико-географическая дифференциация Мирового океана мно­гоступенчата и в некоторых отношениях сходна с дифференциацией суши. На картах природного районирования Мирового океана, по­мещенных в «Океанографической энциклопедии» (1974) и в капи­тальном многотомнике «География Мирового океана» (1980, т. I) есть природные зоны и регионы, подобные секторам материков.

К.М.Петров (1989), рассматривая дифференциацию морских мелководий на региональном уровне, отмечает, что она отражает три направления физико-географического процесса: зональное, азональное и вертикальное. Единицы широтной зональности — пояс, сектор, зона (широтная), провинция; азональной диффе­ренциации — океанический или морской бассейн, область, под­область, округ; глубинной дифференциации — ярус, пояс (верти­кальный), зона (вертикальная). Любой ПАК в Океане должен рас­сматриваться в историческом аспекте как целое, развитие которо­го совершалось в определенных условиях вертикальной и широт­ной зональности и контролировалось азональными факторами.

Последнюю ступень региональной размерности природных ком­плексов по аналогии с иерархическими единицами ПТК К. М. Пет­ров называет ландшафтом, а его морфологические части — мест­ностями, урочищами, подурочищами, фациями. По-видимому, для мелководных комплексов это вполне приемлемо.


Специфика объекта требует от исследователя знания физики моря, биологии, климатических закономерностей и др. Но не только специалисты по морским системам, а каждый географ и эколог должен иметь представление о продуктивности ПАК, о пустын­ных зонах Мирового океана и о его «благодатных» местах, о роли тончайшей поверхностной пленки, через которую море «дышит» и «питается» и которая так уязвима в отношении загрязнения (осо­бенно поверхностно активными веществами, например нефтепро­дуктами), о том, что захоронение техногенных отходов в Океане может принести непоправимый ущерб всей планете.

Методы исследований Мирового океана лишь в небольшой сво­ей части связаны с использованием водолазной техники (на не­больших глубинах) или специальных подвижных аппаратов. В ос­новном же это — зондирование глубин с корабля или при помощи постановки автоматических буев, когда в глубину опускается трос с датчиками и емкостями для отбора проб. Большое значение име­ет применение методов аэро- и космосъемки (для ограниченных глубин), геофизических методов — радио- и эхолокации, глубин­ного бурения и т.д. Сведения о физике моря для изучения ПАК так же важны, как для природных комплексов суши геолого-гео­морфологические материалы.

В целом, исследования природных аквальных комплексов зна­чительно сложнее и дороже наземных. Уже само по себе пребыва­ние человека в чужеродной среде ограничено и требует специаль­ных технических средств. Упомянутая выше динамичность ПАК зачастую приводит к невозможности найти повторно изучавшийся ранее комплекс, из чего напрашивается вывод, что и само сущест­вование ПАК в ряде случаев носит, может быть, статистический, вероятностный характер. Направление исследований Мирового океа­на в настоящее время существенно изменилось. Совсем недавно он рассматривался как источник неисчерпаемых ресурсов, и работы по его изучению стимулировались задачей быстрейшего их выяв­ления. Оказалось, что они вовсе не безграничны, а во многих случаях пока недоступны для использования. Сейчас акцент интересов сместился на природоохранно-экологические аспекты. Благополу­чие человека, дальнейшее существование и развитие человеческо­го общества оказались в прямой зависимости от состояния среды не только на суше, но и в неменьшей степени в Мировом океане.

Теория и методы исследования природных комплексов Миро­вого океана подробно изложены К. М. Петровым (1989). Ландшаф-товедам наиболее близки исследования прибрежных мелководий И полосы побережий. А. Н. Иванов (1995) предлагает на приливно-отливной полосе с наличием ПТК и ПАК выделять территориаль-Но-аквальные природные комплексы (ТАПК).

Методически пока мало разрабатывается связь наземных и ак-вальных систем в региональном масштабе, хотя это чрезвычайно


 
 


важно: вспомним хотя бы ядерные испытания на Новой Земле и рекордную биомассу северных шельфовых морей России. В геогра­фической оболочке нет «ненужных» ПТК или ПАК.

Далее в своей работе мы не будем касаться вопросов исследова­ния аквальных комплексов. Приведем лишь еще одну ссылку на классический труд Л. Г. Раменского «Введение в почвенное и гео­ботаническое изучение земель» (1938), где излагаются и методы исследования водоемов суши.

Итак, объектом комплексных физико-географических исследо­ваний являются природные территориальные, аквальные, а также и территориально-аквальные комплексы (ПТК, ПАК и ТАПК) разных таксономических рангов. Углубленное изучение природных комплексов приводит к необходимости их классификации (либо типизации) по степени сходства и различия. Это имеет как науч­ное, так и практическое значение, поскольку близкие по своим характеристикам комплексы могут обладать сходными ресурсами и условиями для хозяйственной деятельности, более или менее одинаковой устойчивостью по отношению к определенным воз­действиям, однотипными для них могут быть и природоохранные рекомендации.




Поделиться с друзьями:


Дата добавления: 2015-05-09; Просмотров: 987; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.