КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Химия в механистическом мире
Вторая научная революция. Создание классической механики и экспериментального естествознания. Механическая картина мира Трагическая гибель Джордано Бруно произошла на рубеже двух эпох: эпохи Возрождения и эпохи Нового времени. Последняя охватывает три столетия — XVII, XVIII, XIX века. В этом трехсотлетнем периоде особую роль сыграл XVII век, ознаменовавшийся рождением современной науки, у истоков которой стояли такие выдающиеся ученые, как Галилей, Кеплер, Ньютон. В учении Галилео Галилея (1564-1642) были заложены основы нового механического естествознания. Как свидетельствуют А. Эйнштейн и Л. Инфельд, «самая фундаментальная проблема, остававшаяся в течение тысячи лет неразрешенной из-за сложности, — это проблема движения»8. До Галилея общепринятым в науке считалось понимание движения, выработанное Аристотелем и сводившееся к следующему принципу: тело движется только при наличии внешнего на него воздействия, и если это воздействие прекращается, тело останавливается. Галилей показал, что этот принцип Аристотеля (хотя и согласуется с вашим повседневным опытом) является ошибочным. Вместо него Галилей сформулировал совершенно иной принцип, получивший впоследствии наименование принципа инерции: тело либо находится в состоянии покоя, либо движется, не изменяя направления и скорости своего движения, если на него не производится какого-либо внешнего воздействия. Большое значение для становления механики как науки имело исследование Галилеем свободного падения тел. Он установил, что скорость свободного падения тел не зависит от их массы (как думал Аристотель), а пройденный падающим телом путь пропорционален квадрату времени падения. Галилей открыл, что траектория брошенного тела, движущегося под воздействием начального толчка и земного притяжения, является параболой. Галилею принадлежит экспериментальное обнаружение весомости воздуха, открытие законов колебания маятника, немалый вклад в разработку учения о сопротивлении материалов. Галилей выработал условия дальнейшего прогресса естествознания, начавшегося в эпоху Нового времени. Он понимал, что слепая вера в авторитет Аристотеля сильно тормозит развитие науки. Истинное знание, считал Галилей, достижимо исключительно на пути изучения природы при помощи наблюдения, опыта (эксперимента) и вооруженного математическим знанием разума, — а не путем изучения и сличения текстов в рукописях античных мыслителей. Росту научного авторитета Галилея способствовали его астрономические исследования, обосновывавшие и утверждавшие гелиоцентрическую систему Коперника. Используя построенные им телескопы (вначале это был скромный оптический прибор с трехкратным увеличением, а впоследствии был создан телескоп и с 32-кратным увеличением), Галилей сделал целый ряд интересных наблюдений и открытий. Он установил, что Солнце вращается вокруг своей оси, а на его поверхности имеются пятна. У самой большой планеты Солнечной системы — Юпитера — Галилей обнаружил 4 спутника (из 13 известных в настоящее время). Наблюдения за Луной показали, что ее поверхность гористого строения и что этот спутник Земли имеет либрацию, т.е. видимые периодические колебания маятникового характера вокруг центра. Галилей убедился, что кажущийся туманностью Млечный Путь состоит из множества отдельных звезд. Но самым главным в деятельности Галилея как ученого-астронома было отстаивание справедливости учения Н. Коперника, которое подвергалось нападкам не только со стороны церковных кругов, но и со стороны некоторых ученых, высказывавших сомнения в правильности этого учения. Галилей сумел показать несостоятельность всех этих сомнений и дал блестящее естественнонаучное обоснование правильности идей Н.Коперника. Как уже отмечалось выше, католической церковью в 1616 году было принято решение о запрещении книги Коперника «Об обращениях небесных сфер», а его учение объявлено еретическим. Галилей в этом решении упомянут не был, но ему все же пришлось предстать перед судом инквизиции. После длительных допросов он был вынужден отречься от учения Коперника и принести публичное покаяние. Однако остановить движение, прервать преемственность научной мысли было уже невозможно. С астрономическими наблюдениями Галилея, описанными им в сочинении «Звездный вестник», ознакомился и дал им высокую оценку один из крупнейших математиков и астрономов конца XVI — первой трети XVII в. Иоган Кеплер (1571-1630). Эта оценка астрономических исследований Галилея содержалась в работе Кеплера «Рассуждение о Звездном вестнике». Кеплер занимался поисками законов небесной механики и составлением звездных таблиц. На основе обобщения данных астрономических наблюдений он установил три закона движения планет относительно Солнца. В своем первом законе Кеплер отказывается от коперниковского представления о круговом движении планет вокруг Солнца. В этом законе утверждается, что каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце. Согласно второму закону Кеплера, радиус-вектор, проведенный от Солнца к планете, в равные промежутки времени описывает равные площади. Из этого закона следовал вывод, что скорость движения планеты по орбите непостоянна и она тем больше, чем ближе планета к Солнцу. Третий закон Кеплера гласит: квадраты времен обращения планет вокруг Солнца относятся как кубы их средних расстояний от него. Помимо сказанного, Кеплеру принадлежит немало заслуг в астрономии и математике. Он разработал теорию солнечных и лунных затмений, предложил способы их предсказания, уточнил величину расстояния между Землей и Солнцем, составил так называемые Рудольфовы таблицы — по имени австрийского императора Рудольфа II, при дворе которого Кеплер занимал место астронома, сменив на этой должности умершего Тихо Браге. С помощью этих таблиц можно было с высокой степенью точности определять в любой момент времени положение планет. Кеплеру принадлежит также решение ряда важных для практики стереометрических задач. Поскольку Кеплер был сторонником гелиоцентрической космологии Коперника и не скрывал этого, Ватикан относился к его сочинениям отрицательно, включив некоторые из них в список запрещенных книг. Конечно, главной заслугой Кеплера было открытие законов движения планет. Но он не объяснил причины их движения. И это неудивительно, ибо не существовало еще понятий силы и взаимодействия. В то время из разделов механики была разработана лишь статика — учение о равновесии (которая разрабатывалась еще в античности, в первую очередь, Архимедом), а в работах Галилея были сделаны первые шаги в разработке динамики. Но в полной мере динамика — учение о силах и их взаимодействии — была создана лишь позднее Исааком Ньютоном. Вторая научная революция завершалась творчеством одного из величайших ученых в истории человечества, каковым был Исаак Ньютон (1643-1727). Его научное наследие чрезвычайно разнообразно. В него входит и создание (параллельно с Лейбницем, но независимо от него) дифференциального и интегрального исчисления, и важные астрономические наблюдения, которые Ньютон проводил с помощью собственноручно построенных зеркальных телескопов (он так же, как и Галилей, именно телескопу обязан первым признанием своих научных заслуг), и большой вклад в развитие оптики (он, в частности, поставил опыты в области дисперсии света и дал объяснение этому явлению). Но самым главным научным достижением Ньютона было продолжение и завершение дела Галилея по созданию классической механики. Благодаря их трудам XVII век считается началом длительной эпохи торжества механики, господства механистических представлений о мире. Ньютон сформулировал три основных закона движения, которые легли в основу механики как науки. Первый закон механики Ньютона — это принцип инерции, впервые сформулированный еще Галилеем: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения до тех пор, пока оно не будет вынуждено изменить его под действием каких-то сил. Существо второго закона механики Ньютона состоит в констатации того факта, что приобретаемое телом под действием какой-то силы ускорение прямо пропорционально этой действующей силе и обратно пропорционально массе тела. Наконец, третий закон механики Ньютона — это закон равенства действия и противодействия. Этот закон гласит, что действия двух тел друг на друга всегда равны по величине и направлены в противоположные стороны. Данная система законов движения была дополнена открытым Ньютоном законом всемирного тяготения, согласно которому все тела, независимо от их свойств и от свойств среды, в которой они находятся, испытывают взаимное притяжение, прямо пропорциональное их массам и обратно пропорциональное квадрату расстояния между ними. Пожалуй, ни одно из всех ранее сделанных научных открытий не оказало такого громадного влияния на дальнейшее развитие естествознания, как открытие закона всемирного тяготения. Огромное впечатление на ученых производил масштаб обобщения, впервые достигнутый естествознанием. Это был поистине универсальный закон природы, которому подчинялось все — малое и большое, земное и небесное. Этот закон явился основой создания небесной механики — науки, изучающей движение тел Солнечной системы. Воображение ученых захватывала простота той картины мира, которая складывалась на основе ньютоновской классической механики. В этой картине, носящей абстрактный характер, отбрасывалось все «липшее»: не имели значения размеры небесных тел, их внутреннее строение, иду- щие в них бурные процессы. Оставались только массы и расстояния между центрами этих масс, к тому же связанные несложной формулой. В 1687 году вышел в свет главный труд Ньютона «Математические начала натуральной философии», заложивший основы современной теоретической физики. Оценивая это событие, видный физик XX века, бывший президент Академии наук СССР СИ. Вавилов писал: «В истории естествознания не было события более крупного, чем появление «Начал» Ньютона. Причина была в том, что эта книга подводила итоги всему сделанному за предшествующие тысячелетия в учении о простейших формах движения материи»9. Не менее высокую оценку дает «Началам» Ньютона такой крупный специалист по истории науки, как Джон Бернал. «По убедительности аргументации, подкрепленной физическими доказательствами, — пишет он, — книга не имеет себе равных во всей истории науки. В математическом отношении ее можно сравнить только с «Элементами» Евклида, а по глубине физического анализа и влиянию на идеи того времени — только с «Происхождением видов» Дарвина. Она сразу же стала библией новой науки»...10 В своей знаменитой работе Ньютон предложил ученому миру научно-исследовательскую программу, которая вскоре стала ведущей не только в Англии, на родине великого ученого, но и в континентальной Европе. Свою научную программу Ньютон назвал «экспериментальной философией», подчеркивая решающее значение опыта, эксперимента в изучении природы. Идеи Ньютона, опиравшиеся на математическую физику и эксперимент, определили направление развития естествознания на многие десятилетия вперед. Вместе с тем, эти идеи предопределили механические взгляды на материальный мир, которые господствовали в естествознании не только в течение XVII и XVIII веков, но и почти весь XIX век. В целом природа понималась как гигантская механическая система, функционирующая по законам классической механики. Считалось, что в силу неумолимой необходимости, действующей в природе, судьба даже отдельной материальной частицы заранее предрешена на все времена. Ученые-естествоиспытатели видели в классической механике прочную и окончательную основу естествознания. Естествознание XVII века характеризовалось не только революционными достижениями в космологии и меха нике. В этот период была начата, образно говоря, закладка будущего здания химической науки. Последнее было связано с именем известного английского ученого, физика и химика Роберта Бойля (1627-1691). Как физик, он получил известность благодаря открытию «газового закона», устанавливающего зависимость объема газа от давления. Согласно этому закону, произведение удельного объема газа на его давление при неизменной температуре есть величина постоянная. Поскольку этот же закон установил, независимо от Бойля, и французский медик Эдм Мариотт (1620-1684), то в историю науки он вошел под названием закона Бойля-Мариотта. Но этим законом не ограничивается вклад Р. Бойля в науку. Он серьезно занимался химией, выполнял многочисленные химические опыты. Одним из первых он получил и описал водород, хотя истинная природа этого газа осталась ему неизвестной. Бойль сумел получить фосфор и некоторые его соединения. Он разработал основы качественного химического анализа «мокрым путем», т. е. в растворах, и ввел применение цветочных отваров в качестве индикаторов на присутствие кислот и щелочей. Им были четко сформулированы отличительные признаки кислот (энергично растворять различные вещества, изменять окраску сока некоторых растений и т. д.) и установлено, что эти особенности кислот исчезают, если привести их в соприкосновение со щелочами. В своей книге «Химик-скептик», опубликованной в 1661 году, Бойль отверг как нереальное утверждение представителей античной натурфилософии о четырех «стихиях» (огне, воздухе, воде и земле) и изложил применительно к химии основы корпускулярной теории. Бойль дал определение корпускулы11 как простейшего элемента вещества. Корпускула, по мнению Бойля, — это простое тело, которое уже не может быть разделено на другие более простые тела, т. е., другими словами, это предел качественного деления вещества. Бойль был убежден, что химия как наука должна широко использовать корпускулярные представления. Выступая за союз химиков и философов-корпускуляристов, он писал: «Сколько химических экспериментов можно объяснить корпускулярными понятиями, столько же корпускулярных понятий можно легко иллюстрировать или подтвердить посредством химических экспериментов»12. Несомненной заслугой Бойля является первое научное толкование понятия химического элемента. Он предложил химико-аналитическое определение элемента и фактически поставил перед химией новую задачу: научиться выделять в чистом виде отдельные вещества и устанавливать их состав, т. е. определять, из каких конкретных частей состоит данное тело и каким комплексом физико-химических свойств оно обладает. Бойль положил начало преобразованию химии в самостоятельную науку. Сам же он подчеркивал, что занимается химией «не столько ради нее самой, но в целях натуральной философии и для нее», что его целью было достичь «взаимопонимания между химиками и механистическими философами, которые доселе слишком мало были знакомы с учениями друг друга»13.
Дата добавления: 2015-05-07; Просмотров: 594; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |