Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Возрастание и убывание функции




 

 

 

 

Поясним сущность процесса изменения функции графически.

Из геометрии известно, что для острого угла >0, для тупого <0. Так как производная , то на участке 1-2, где >0 - функция возрастает, а на участке 2-3, где , функция убывает.

Таким образом, доказана важная теорема: если производная функции положительна в пределах интервала, то функция у=f(х) на этом интервале возрастает, если производная отрицательна, то функция на интервале убывает.

 

Особое значение имеет точка 2, в которой касательная параллельна оси оХ и Такие точки называются стационарными и часто характеризуют момент смены возрастания на убывание и наоборот. Этих точек может быть и несколько.

Экстремумы функции

 

Среди стационарных точек выделим экстремальные: функция имеет максимум (минимум) в точке х=а, если вблизи этой точки всем значениям х соответствуют меньшие (большие), чем . По нашему чертежу точка 2 является точкой экстремума, в данном случае - максимума.

 

 

 

 

Сформулируем необходимое условие экстремума: если функция имеет экстремум в точке х=а, то в этой точке ее производная либо равна 0, либо бесконечна, либо не существует.

 

 

Отметим, что необходимое условие экстремума еще не гарантирует присутствие экстремума. Кроме того, оно не дает ответа о типе экстремума - минимуме или максимуме. И, наконец, оно может соблюдаться и не в экстремальных точках, что и показано на рисунке.

 

Таким образом, чтобы установить наличие экстремума и определить его тип, следует сформулировать достаточные условия. На практике используют два основных условия:

 

Первое достаточное условие экстремума: если в стационарной точке х=а производная меняет свой знак с плюса на минус (с возрастания на убывание), то функция у= в этой точке имеет максимум, если с минуса на плюс, то функция имеет минимум.

 

Первое достаточное условие обычно используют в случаях, когда производная имеет громоздкий вид. Если же вторая производная вычисляется достаточно просто, то удобно использовать следующее условие.

 

Второе достаточное условие: если в стационарной точке х=а вторая производная положительна, то функция в этой точке имеет минимум, если же отрицательна, то функция имеет максимум.

 

Таким образом, приведем схему определения экстремумов функции :

· Определяем производную .

· Находим стационарные точки функции из анализа области определения производной и уравнения .

· Выбираем первое или второе достаточное условие. В последнем случае находим

· Исследуем стационарные точки по достаточному условию, определяем наличие и вид экстремума.

· Вычисляем экстремальные значения функции уэкстр.=f(хстац.).

 

 

 

Заметим, что, если интервал изменения функции ограничен, т.е. то часто возникает задача отыскания наибольшего и наименьшего значений (глобальных экстремумов) функции на этом интервале, причем они могут далеко не всегда совпадать с локальными. Для решения проблемы сравниваются не только внутренние экстремумы, но и проверяются значения функции и на концах интервала. На чертеже показано, что глобальный и локальный минимумы совпадают и равны , но глобальный максимум не совпадает с локальным

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 538; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.