КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Однородные уравнения
Метод введения новых неизвестных при решении уравнений и систем уравнений. При решении биквадратных и возвратных уравнений мы вводили новые неизвестные (у = х2 для биквадратных уравнений и у = х + 1 / х для возвратных уравнений). Введение новых неизвестных применяется также при решении уравнений иного вида и систем уравнений. Пример 7.28. Решим уравнение 12 / (х2 + 2х) - 3 / (х2 + 2х - 2) = 1. Решение. Если попробовать привести дробь в левой части уравнения к одному знаменателю, то получим уравнение четвёртой степени, которое мы умеем решать. Чтобы решить заданное уравнение, заметим, что в обе дроби входит одно и то же выражение х2 + 2х. Поэтому введём новое неизвестное у, положив, что у = х2 + 2х. Тогда уравнение примет вид 12 / у - 3 / (у - 2) = 1 или (у2 - 11у + 24) / (у(у - 2)) = 0, откуда y1 = 3; y2 = 8. Осталось решить уравнения х2 + 2х = 3 (его корни х1 = 1, х2 = - 3) и х2 + 2х = 8 (его корни х3 = 2, х4 = - 4). Применённый метод называется методом введения новых неизвестных, и его полезно применять, когда неизвестное входит в уравнение всюду в виде одной и той же комбинации (особенно если эта комбинация содержит степени неизвестного выше первой). Пример 7.29. Решим систему уравнений
Решение. Обозначим 1 / х через U, а 1 / у через V. Тогда система примет вид
т.е. получится система двух линейных уравнений с двумя неизвестными U и V. Из первого уравнения выражаем U через V: U = 4 - 3V / 2, и подставляя во второе: 5(4 - 3V / 2) - 2V = 1, откуда V = 2. Теперь находим U = 1 и решаем уравнения 1 / x = 1, 1 / y = 2. Ответ: x = 1, y = 0,5. Пример 7.30. (x – 4)(x – 5)(x – 6)(x – 7) = 1680. Решение. (x – 4)(x – 7)× (x – 5)(x – 6) = 1680, т.е. (x2 – 11x + 28)(x2 – 11x + 30) = 1680. Обозначим x2 – 11x + 28 = t, тогда t(t + 2) = 1680, t2 + 2t – 1680 = 0, t1 = – 42; t2 = 40. Поэтому x2 – 11x + 28 = – 42; x2 – 11x + 70 = 0; D = 121 – 280 < 0 Þ x1,2 Î Æ. x2 – 11x + 28 = 40; x2 – 11x – 12 = 0; x1 = 12; x2 = – 1. Ответ: x1 = 12; x2 = – 1. Пример 7.31. 2x4 + 3x3 – 16x2 + 3x + 2 = 0. Решение. Это возвратное уравнение. Разделим обе части уравнения на x2 ¹ 0, получим 2x2 + 3x – 16 +3 / x + 2 / x2 = 0, т.е. 2(x2 + 1 / x2) + 3(x + 1 / x) – 16 = 0, обозначим x + 1 / x = t, тогда x2 + 2 + 1 / x2 = t2, т.е. x2 + 1 / x2 = t2 – 2, получаем 2(t2 – 2) + 3t – 16=0, т.е. 2t2 + 3t – 20 = 0, t1 = – 4; t2 = 5 / 2 = 2,5. Следовательно, имеем x + 1 / x = – 4; x2 + 4x + 1 = 0; x1,2 = –2 ± Ö 3, x + 1 / x = 2,5; 2x2 – 5x + 2 = 0; x3 = 2; x4 = 1 / 2. Ответ: x1,2 = –2 ± Ö 3; x3 = 2; x4 = 1 / 2. Пример 7.32. (x + 3)4 + (x + 5)4 = 16. Решение. Сделаем подстановку x = t – 4. Тогда получаем (t – 1)4 + (t + 1)4 = 16, т.е. t4 – 4t3 + 6t2 – 4t + 1 + t4 + 4t3 + 6t2 + 4t + 1 = 16, т.е. 2t4 + 12t2 – 14 = 0, или t4 + 6t2 – 7 = 0. Положим t2 = z ³ 0, тогда z2 +6z – 7 = 0, z1 = – 7; z2 = 1. С учётом t2 = z ³ 0 отбрасываем z1. Итак, z = 1, т.е. t2 = 1, отсюда t1 = –1; t2 = 1. Следовательно, x1 = – 1 – 4 = – 5 и x2 = 1 – 4 = – 3. Ответ: x1 = – 5 и x2 = – 3. Пример 7.33. 13x / (2x2 + x +3) + 2x / (2x2 – 5x + 3) = 6. Решение. Разделим числитель и знаменатель дробей на x ¹ 0: 13 / (2x + 1 + 3 / x) + 2 / (2x – 5 +3 / x) = 6, обозначим 2x + 3 /x = t. Получаем 13 / (t + 1) + 2 / (t – 5) = 6, т.е. 13t – 65 + 2t + 2 = 6t2 – 24t – 30, т.е. 6t2 – 39t + 33 = 0, т.е. 2t2 – 13t + 11 = 0, t1 = 1; t2 = 5,5. Следовательно: 2x + 3 / x = 1; 2x2 – x + 3 = 0; D = 1 – 24 < 0 Þ x Î Æ. 2x + 3 / x = 5,5; 4x2 – 11x + 6 = 0; x1 = 2; x2 = 0,75. Ответ: x1 = 2; x2 = 0,75. Пример 7.34. x4 – 2x3 + x – 0,75 = 0. Решение. Выделим полный квадрат, прибавив и вычтя в левой части уравнения x2: x4 – 2x3 + x2 – x2 + x – 0,75 = 0, т.е. (x2 – x)2 – (x2 – x) – 0,75 = 0. Пусть x2 – x = t, тогда t2 – t – 0,75 = 0, x1 = – 0,5; x2 = 1,5. Возвращаясь к старой переменной, получаем: x2 – x = – 0,5; x2 – x + 0,5 = 0; D = 1 – 2 < 0 Þ x Î Æ. x2 – x = 1,5; x2 – x – 1,5 = 0; x1,2 = (1 ± Ö 7) / 2. Ответ: x1,2 = (1 ± Ö 7) / 2. Пример 7.35. x2 + 81x2 / (9 + x)2 = 40. Решение. Воспользуемся формулой: a2 + b2 = (a – b)2 + 2ab ((a - b)2 = a2 - 2ab + b2Þ Þ a2 + b2 = (a - b)2 + 2ab). Получаем: (x – 9x / (9 + x))2 + 2x× 9x / (9 + x) = 40, или (x2 / (9 + x))2 + 18x2 / (9 + x) = 40. Пусть: (x2 / (9 + x)) = t. Тогда t2 + 18t – 40 = 0, t1 = – 20; t2 = 2. Получаем два уравнения: (x2 / (9 + x)) = 2; x2 – 2x – 18 = 0; x1,2 = 1 ± Ö 19, (x2 / (9 + x)) = – 20; x2 + 20x + 180 = 0; D = 400 – 720 < 0, Þ x Î Æ. Ответ: x1,2 = 1 ± Ö 19. Пример 8.36. Решим систему уравнений
Решение. заметим, что для решения системы выполняется условие у ¹ 0. В самом деле, из первого уравнения следует, что если у = 0, то и х = 0, а числа х = 0 и у = 0 не удовлетворяют второму уравнению системы. Разделим первое уравнение на у2. Получится уравнение 8х2 / у2 - 6ху / у2 + у2 / у2 = 0 или 8х2 / у2 - 6х / у + 1 = 0. Введём вспомогательное неизвестное U = х / у. Уравнение примет вид 8U2 - 6U + 1 = 0. Это квадратное уравнение, имеющее корни U1 = 0,5; U2 = 0,25. Таким образом, из первого уравнения мы получаем что либо x / y = 1 / 2, либо x / y = 1 / 4. Осталось подставить выражения у =2х и у = 4х (рассмотрев оба случая) во второе уравнение системы. В первом случае получается уравнение 5х2 = 5, откуда х1 = 1, х2 = - 1; соответственно у1 = 2, у2 = - 2. Во втором случае получается уравнение17х2 = 5, откуда х3 = Ö (5 / 17), x4 = - Ö (5 / 17); соответственно y3 = 4Ö (5 / 17), y4 = - 4Ö (5 /17). Первое уравнение системы нам удалось представить как уравнение относительно x / y благодаря тому, что степень всех членов, входящих слагаемыми в это уравнение (8x2, 6xy, y2), одна и та же — она равна двум. Поэтому после деления на y2 каждое слагаемое выразилось через x / y. Многочлен от двух переменных x и y такой, что степень каждого его члена равна одному и тому же числу k, называется однородным многочленом степени k. Уравнение вида P (x, y) = 0 называется однородным уравнением степени k относительно x и y, если P (x, y) — однородный многочлен степени k. Однородное уравнение относительно x и y делением на yk (если y = 0 не является корнем уравнения) превращается в уравнение относительно неизвестного x / y. Это свойство однородного уравнения помогает решать многие задачи. Пример 8.37. Решить систему уравнений
Решение. Ни одно из уравнений системы не является однородным. Но если умножить первое уравнение на 7 и прибавить к нему почленно второе уравнение, умноженное на 3, то получится уравнение 7y2 - 10xy + 3x2 = 0, являющееся следствием исходной системы. Разделим обе части уравнения на x2 и решим уравнение 7U2 - 10U + 3 = 0 (здесь U = y / x, причём из второго уравнения системы следует, что x ¹ 0). Находим, что y = x или y = 3x / 7. Подставляя это выражение во второе уравнение и, рассмотрев оба случая, найдём решения: x1 = 7, y1 = 3; x2 = - 7, y2 = - 3. Ответ: x1 = 7, y1 = 3; x2 = - 7, y2 = - 3. Мы получили решения системы путём выведения из заданных уравнений вспомогательного следствия. Такой способ решения систем в некоторых случаях приводит к появлению “посторонних” корней — значений x и y, не удовлетворяющих исходной системе. Поэтому найденные корни надо проверить, подставив их исходную систему и убедившись, что уравнения системы обращаются в верные числовые равенства. Пример 8.38. Решим уравнение (x - 1)4 + 9(x + 1)4 = 10(x2 - 1)2. Решение. Если раскрыть все скобки и привести подобные члены, то получится уравнение четвёртой степени. Попробуем другой путь: введём новые неизвестные U и V: U = (x - 1)2, V = (x + 1)2. Уравнение примет вид U2 + 9V2 = 10UV. Это уравнение однородное, и после деления на V2 оно становится уравнением относительно неизвестного W: W = U / V = (x - 1)2 / (x + 1)2. Решим вспомогательное уравнение W2 - 10W + 9 = 0. Его корни W1 = 1, W2 = 9. Осталось решить уравнения (x - 1)2 / (x + 1)2 = 1 и (x - 1)2 / (x + 1)2 = 9. Из первого уравнения следует, что либо (x - 1) / (x + 1) = 1, либо (x - 1) / (x + 1) = - 1. Из второго получаем, что либо (x - 1) / (x + 1) = 3, либо (x - 1) / (x + 1) = - 3. Решая получившиеся уравнения, видим, что первое из них не имеет корней, а из трёх остальных получаем x1 = 0, x2 = - 2, x3 = - 0,5. Ответ: x1 = 0, x2 = - 2, x3 = - 0,5. Пример 8.39. 3(x2 – x + 1)2 – 5(x + 1)(x2 – x + 1) – 2(x + 1)2 = 0. Решение. Это так называемое однородное уравнение, т.е. уравнение вида ay2a + bya za + cz2a = 0, где a, b, c, a — заданные числа, отличные от нуля; y = y(x), z = z(x) — некоторые функции от x. Разделим обе части уравнения на (x2 – x + 1)2 ¹ 0: 3 – 5(x + 1) / (x2 – x + 1) – 2((x + 1) / (x2 – x + 1))2 = 0. Пусть (x + 1) / (x2 – x + 1) = t, тогда 3 – 5t – 2t2 = 0, т.е. t1 = – 3; t2 = 0,5. Следовательно: (x + 1) / (x2 – x + 1) = 0,5 = 1 / 2; 2x + 2 = x2 – x + 1; x2 – 3x – 1 = 0; x1,2 = (3 ± Ö 13) / 2, (x + 1) / (x2 – x + 1) = – 3; x + 1 = – 3x2 + 3x – 3; 3x2 – 2x + 4 = 0; D = 4 – 48 < 0, Þ x Î Æ. Ответ: x1,2 = (3 ± Ö 13) / 2.
Дата добавления: 2015-05-10; Просмотров: 1518; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |