Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Механизмы этого процесса




На рисунке показан основной механизм мышечного сокращения. Показано расслабленное состояние саркомера (вверху) и сокращенное состояние (внизу). В расслабленном состоянии концы актиновых нитей, отходящие от двух последовательных Z-дисков, лишь незначительно перекрываются. Наоборот, в сокращенном состоянии актиновые нити втягиваются внутрь между миозиновыми так сильно, что их концы максимально перекрывают друг друга. При этом Z-диски притягиваются актиновыми нитями к концам миозиновых. Таким образом, мышечное сокращение осуществляется путем механизма скольжения нитей.

Что заставляет нити актина скользить внутрь среди нитей миозина? Это связано с действием сил, генерируемых при взаимодействии поперечных мостиков, исходящих от нитей миозина, с нитями актина. В условиях покоя эти силы не проявляются, однако распространение потенциала действия вдоль мышечного волокна приводит к выделению из саркоплазматическо-го ретикулума большого количества ионов кальция, которые быстро окружают миофи-бриллы. В свою очередь, ионы кальция активируют силы взаимодействия между нитями актина и миозина, в результате начинается сокращение. Для осуществления процесса сокращения необходима энергия. Ее источником являются высокоэнергетические связи молекулы АТФ, которая разрушается до АДФ с высвобождением энергии. В следующих разделах мы приведем известные детали молекулярных процессов сокращения.

Миозиновая нить. Она состоит из множества молекул миозина, молекулярная масса каждой составляет около 480000. На рисунке показана отдельная молекула; и также — объединение многих молекул миозина в миозиновую нить, а также взаимодействие одной стороны этой нити с концами двух актиновых нитей.

В состав молекулы миозина входят 6 полипептидных цепей: 2 тяжелые цепи с молекулярной массой около 200000 каждая и 4 легкие цепи с молекулярной массой около 20000 каждая. Две тяжелые цепи спирально закручиваются вокруг друг друга, формируя двойную спираль, которую называют миозиновым хвостом. С одного конца обе цепи изгибаются в противоположных направлениях, формируя глобулярную полипептидную структуру, называемую миозиновой головкой. Таким образом, на одном конце двойной спирали молекулы миозина образуются 2 свободные головки; 4 легкие цепи также включены в состав миозиновой головки (по 2 в каждой). Они помогают регулировать функцию головки во время мышечного сокращения.

Миозиновая нить состоит из 200 или более отдельных молекул миозина. Видно, что хвосты молекул миозина объединяются, формируя тело нити, а многочисленные головки молекул выдаются наружу по сторонам тела. Кроме того, наряду с головкой в сторону выступает часть хвоста каждой миозиновой молекулы, образуя плечОу которое выдвигает головку наружу от тела, как показано на рисунке. Выступающие плечи и головки вместе называют поперечными мостиками. Каждый поперечный мостик может сгибаться в двух точках, называемых шарнирами. Один из них расположен в месте, где плечо отходит от тела миозиновой нити, а другой — где головка крепится к плечу. Движение плеча позволяет головке или выдвигаться далеко наружу от тела миозиновой нити, или приближаться к телу. В свою очередь, повороты головки участвуют в процессе сокращения, что обсуждается в следующих разделах.

Общая длина каждой миозиновой нити остается постоянной и равна почти 1,6 мкм. В самом центре миозиновой нити на протяжении 0,2 мкм поперечных мостиков нет, поскольку снабженные шарнирами плечи отходят в стороны от центра.

Сама миозиновая нить сплетена таким образом, что каждая последующая пара поперечных мостиков смещена в продольном направлении относительно предыдущей на 120°, что обеспечивает распределение поперечных мостиков во всех направлениях вокруг нити.

АТФ-азная активность миозиновой головки. Есть и другая особенность миозиновой головки, необходимая для мышечного сокращения: миозиновая головка функционирует как фермент АТФ-аза. Как объясняется далее, это свойство позволяет головке расщеплять АТФ и использовать энергию расщепления высокоэнергетической связи для процесса сокращения.

Актиновая нить. Актиновая нить состоит из трех белковых компонентов: актина, тропомиозина и тропонина.

Основой актиновой нити являются две цепи белковой молекулы F-актина. Обе цепи закручиваются в спираль так же, как и молекула миозина.

Каждая цепь двойной спирали F-актина состоит из полимеризованных молекул G-актина с молекулярной массой около 42000. К каждой молекуле G-актина прикреплена 1 молекула АДФ. Полагают, что эти молекулы АДФ являются активными участками на актиновых нитях, с которыми взаимодействуют поперечные мостики миозиновых нитей, обеспечивая мышечное сокращение. Активные участки на обеих цепях F-актина двойной спирали расположены со смещением таким образом, что вдоль всей поверхности актиновой нити встречается один активный участок примерно через каждые 2,7 нм.

Длина каждой актиновой нити — около 1 мкм. Основания актиновых нитей прочно встроены в Z-диски; концы этих нитей выступают в обоих направлениях, располагаясь в пространствах между миозиновыми молекулами.

Молекулы тропомиозина. Актиновая нить также содержит другой белок — тропомиозин. Каждая молекула тропомиозина имеет молекулярную массу 70000 и длину 40 нм. Эти молекулы спирально оплетают спираль из F-актина. В состоянии покоя молекулы тропомиозина располагаются поверх активных участков актиновых нитей, препятствуя их взаимодействию с миозиновыми нитями, лежащему в основе сокращения.

Тропонин и его роль в мышечном сокращении. По ходу молекул тропомиозина к ним периодически прикреплены другие белковые молекулы, называемые тропонином. Они представляют собой комплексы трех слабосвязанных белковых субъединиц, каждая из которых играет специфическую роль в регуляции мышечного сокращения. Одна из субъединиц (тропонин I) имеет высокое сродство к актину, другая (тропонин Т) — к тропомиозину, третья (тропонин С) — к ионам кальция. Считают, что этот комплекс прикрепляет тропомиозин к актину. Высокое сродство тропонина к ионам кальция, как полагают, инициирует процесс сокращения, о чем говорится в следующей статье.

Физиология ЦНС

Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой (увеличить рисунок)

Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Bся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов:

рецепторные, или чувствительные;

вставочные, замыкательные (кондукторные);

эффекторные, двигательные нейроны, от которых импульс направляется к рабочим органам (мышцам, железам).

Нервная система условно подразделяется на два больших отдела - соматическую, или анимальную, нервную систему и вегетативную

Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры.

Вегетативная нервная система оказывает влияние на процессы так называемой растительной жизни, общие для животных и растений (обмен веществ, дыхание, выделение и др.), отчего и происходит ее название (вегетативная - растительная). Обе системы тесно связаны между собой, однако вегетативная нервная система обладает некоторой долей самостоятельности и не зависит от нашей воли, вследствие чего ее также называют автономной нервной системой. Ее делят на две части симпатическую и парасимпатичесакую.

В нервной системе выделяют центральную часть - головной и спинной мозг - центральная нервная система и переферическую, представленную отходящими от головного и спинного мозга нервами, - переферическая нервная система. На разрезе мозга видно, что он состоит из серого и белого вещества.

 

Серое вещество образуется скоплениями нервных клеток (с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названия ядер.

Белое вещество образуют нервные волокна, покрытые миелиновой оболочкой (отростки нервных клеток, образующих серое вещество). Нервные волокна в головном и спинном мозге образуют проводящие пути.

Переферические нервы в зависимости от того, из каких волокон (чувствительных либо двигательных) они состоят, подразделяются на чувствительные, двигательные и смешанные. Тела нейронов, отростки которых состовляют чувствительные нервы, лежат в нервных узлах вне мозга. Тела двигательных нейронов лежат в передних рогах спинного мозга или двигательных ядрах головного мозга.

три рода воздействий на органы:

1) пусковое, вызывающее либо прекращающее функцию органа (сокращение мышцы, секрецию железы);

2) сосудодвигательное, изменяющее ширину просвета сосудов и тем самым регулирующее приток к органу крови;

3) трофическое, повышающее или понижающее обмен веществ и, следовательно потребление питательных веществ и кислорода. Благодаря этому постоянно согласуется функциональное состояние ргана и его потребность в питательных веществах и кислороде. Когда к работающей скелетной мышце по двигательным волокнам направляются импульсы, вызывающие ее сокращение, то одновременно по вегетативным нервным волокнам поступают импульсы, расширяющие сосуды и у силивающие обмен веществ. Тем самым обеспечивается энергетическая возможность выполнения мышечной работы.

Рефлекс - основная форма нервной деятельности. Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии центральной нервной системы, называется рефлексом.

Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой.

В рефлекторной дуге различают пять звеньев:

рецептор;

чувствительное волокно, проводящее возбуждение к центрам;

нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные;

двигательное волокно, несущее нервные импульсы на периферию;

действующий орган - мышца или железа.

Любое раздражение - механическое, световое, звуковое, химическое, температурное, воспринимаемое рецептером, трансформируется (преобразуется) или, как теперь принято говорить, кодируется рецептором в нервный импульс и в таком виде по чувствительным волокнам направляется в центральную нервную систему. При помощи рецепторов организм получает информацию обо всех изменениях, происходящих во внешней среде и внутри организма.

В центральной нервной системе эта информация перерабатывается, отбирается и передается на двигательные нервные клетки, которые посылают нервные импульсы к рабочим органам - мышцам, железам и вызывают тот или иной приспособительный акт - движение или секрецию.

Рефлекс как приспособительная реакция организма обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 390; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.