КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегральные (системные) методы обработки данных
Сравнительный анализ (критерии значимости отличий). Критерии значимости различий можно разделить на параметрические и непараметрические. Среди непараметрических критериев самыми используемыми критериями являются: - критерий Вилкоксона для связанных выборок и критерий -критерий Манна-Уитни для несвязанных выборок. -t - критерий Стьюдента - для сравнительной оценки средних величин -F - критерий Фишера (при условии нормального распределения изучаемой переменной) - для сравнительной оценки дисперсий. Внедрение в научные исследования вычислительной техники позволяет быстро и точно определять любые количественные характеристики любых массивов данных. Разработаны различные программы, по которым можно проводить соответствующий статистический анализ практически любых выборок. Из массы статистических приемов в психологии наибольшее распространение получили следующие: - факторный, - регрессионный, - кластерный, -дисперсионный. Корреляционный анализ- Сводится к вычислению коэффициентов корреляции в самых разнообразных соотношениях между переменными. Соотношения задаются исследователем, а переменные равнозначны, т. е. что являются причиной, а что следствием, установить через корреляцию невозможно. Кроме тесноты и направленности связей метод позволяет установить форму связи (линейность, нелинейность). Надо заметить, что нелинейные связи не поддаются анализу общепринятыми в психологии математическими и статистическими методами. Дисперсионный анализ- этот метод позволяет выявлять не только взаимосвязь, но и зависимости между переменными, т. е. влияние различных факторов на исследуемый признак. Это влияние оценивается через дисперсионные отношения. Изменение изучаемого признака (вариативность) может быть вызвано действием отдельных известных исследователю факторов, их взаимодействием и воздействиями неизвестных факторов. Дисперсионный анализ позволяет обнаружить и оценить вклад каждого из этих влияний на общую вариативность исследуемого признака. Таким образом, дисперсионный анализ – это «исследование влияния переменных факторов на изучаемую переменную по дисперсиям». Факторный анализ- Метод позволяет снизить размерность пространства данных, т. е. обоснованно уменьшить количество измеряемых признаков (переменных) за счет их объединения в некоторые совокупности, выступающие как целостные единицы, характеризующие изучаемый объект. Эти составные единицы и называют в данном случае факторами, от которых надо отличать факторы дисперсионного анализа, представляющие собой отдельные признаки (переменные). Основой анализа является матрица корреляций, т. е. таблицы коэффициентов корреляции каждого признака со всеми остальными (принцип «все со всеми»). В зависимости от числа факторов в корреляционной матрице различают однофакторный (по Спирмену), бифакторный (по Холзингеру) и многофакторный (по Тёрстону) анализы. По характеру связи между факторами метод делится на анализ с ортогональными (независимыми) и с облическими (зависимыми) факторами. Регрессионный анализ- метод позволяет изучать зависимость среднего значения одной величины от вариаций другой (других) величины. Специфика метода заключается в том, что рассматриваемые величины (или хотя бы одна из них) носят случайный характер. Тогда описание зависимости распадается на две задачи: 1) выявление общего вида зависимости и 2) уточнение этого вида путем вычисления оценок параметров зависимости.
Дата добавления: 2015-05-10; Просмотров: 621; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |