Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Метод заряда литий-ионных (Li-ion) аккумуляторов




Реверсивный метод заряда.

 

В анализаторах аккумуляторов Cadex 7000 [3,4] и CASP/2000L(H) используются реверсивные импульсные методы заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами. Считается, что такой метод заряда улучшает рекомбинацию газов, возникающих в процессе заряда, и позволяет проводить заряд большим током за меньшее время. Кроме того, восстанавливается площадь активной поверхности рабочего вещества аккумулятора, устраняя тем самым "эффект памяти".

На рис.3 схематично изображена временная диаграмма реверсивного метода заряда NiCd и NiMH аккумуляторов, реализованная в анализаторе Cadex 7000. Цифрой 1 обозначен нагрузочный (разрядный) импульс, а цифрой 2 - зарядный.

Рисунок 3. Реверсивный метод заряда NiCd и NiMH аккумуляторов

Величина обратного импульса нагрузки определяется в процентах от тока заряда в диапазоне от 5 до 12 %. Оптимальное значение 9 %.

Для заряда Li-ion аккумуляторов используется метод "постоянное напряжение / постоянный ток", суть которого заключается в ограничении напряжения на аккумуляторе. В этом он подобен методу заряда свинцово-кислотных аккумуляторов (SLA). Основные отличия заключаются в том, что для Li-ion аккумуляторов - выше напряжение на элемент (номинальное напряжение элемента 3.6 В против 2 В для SLA), более жесткий допуск на это напряжение (+ - 0.05 В) и отсутствие медленного подзаряда по окончании полного заряда.

Для примера приведем требования и рекомендации по заряду и разряду литий-ионных аккумуляторов фирмы Panasonic [1]:

· максимальное напряжение заряда 4.2 или 4.1 вольта в зависимости от модели аккумулятора;

· напряжение окончания разряда 3.0 вольта;

· рекомендуемый ток заряда 0.7 С, ток разряда (нагрузки) - 1 С и меньше;

· если напряжение на аккумуляторе менее 2.9 вольта, то рекомендуемый ток заряда 0.1 С;

· глубокий разряд может привести к повреждению аккумулятора (т.е. должно соблюдаться общее правило - Li-ion аккумуляторы любят скорее находиться в заряженном состоянии, чем в разряженном, и заряжать их можно в любое время, не дожидаясь разряда);

· по мере приближения напряжения на аккумуляторе к максимальному значению, ток заряда уменьшается. Окончание разряда должно происходить при уменьшении тока заряда до (0.1 … 0.07) С в зависимости от модели аккумулятора. После окончания заряда ток заряда прекращается полностью.

· диапазон температур при заряде от 0 до 45 градусов Цельсия, при разряде от минус 10 до 60 градусов Цельсия.

В то время как для SLA аккумуляторов допустима некоторая гибкость в установке значения напряжения прекращения заряда, то для Li-ion аккумуляторов изготовители очень строго подходят к выбору этого напряжения. Порог напряжения прекращения заряда для Li-ion аккумуляторов 4.10 В или 4.20 В, допуск на установку для обоих типов + - 0.05 В на элемент. Для вновь разрабатываемых Li-ion аккумуляторов, вероятно, будут определены другие значения этого напряжения. Следовательно, зарядные устройства для них должны быть адаптированы к требуемому напряжению заряда.

Более высокое значение порога напряжения обеспечивает и большее значение емкости, поэтому в интересах изготовителя выбрать максимально возможный порог напряжения без нарушения безопасности. Однако на величину этого порога влияет температура аккумулятора, и его устанавливают достаточно низким для того, чтобы допустить повышенную температуру при заряде.

В зарядных устройствах и анализаторах аккумуляторов, которые позволяют изменять значение этого порога напряжения, его правильная установка должна соблюдаться при обслуживании любых аккумуляторов Li-ion типа. Однако большинство изготовителей не обозначают тип Li-ion аккумулятора и напряжения окончания заряда. И, если напряжение установлено неправильно, то аккумулятор с более высоким напряжением выдаст более низкое значение емкости, а аккумулятор с более низким - будет немного перезаряжен. При умеренной температуре повреждения аккумуляторов не происходит.

Именно в этом, как правило, и заключается причина того, что аккумулятор, заряженный, например, в "родном" телефоне, работает меньшее или большее время, чем этот же аккумулятор, заряженный в настольном зарядном устройстве неизвестного производителя.

Повышение температуры аккумулятора при заряде незначительно (от 2 до 8 градусов в зависимости от типа и производителя)

Вмешательство потребителя в любое Li-ion зарядное устройство не рекомендуется.

Медленный подзаряд по окончании заряда, характерный для аккумуляторов на основе никеля, не применяется, потому что Li-ion аккумулятор не терпит перезаряда. Медленный заряд может вызвать металлизацию лития и привести к разрушению элемента. Вместо этого, время от времени для компенсации маленького саморазряда аккумулятора из-за небольшого тока потребления устройством защиты, может применяться кратковременный заряд.

Li-ion аккумуляторы содержат несколько встроенных устройств защиты: плавкий предохранитель, термопредохранитель и внутреннюю схему управления, которая отключает аккумулятор в нижней и верхней точках напряжения разряда и заряда.

Меры предосторожности: Никогда не пытайтесь заряжать литиевые батарейки! Попытка зарядить эти аккумуляторы может вызывать взрыв и воспламенение, которые распространяют ядовитые вещества и могут причинить повреждения оборудованию.

Меры безопасности: В случае разрушения литий-ионного аккумулятора, утечки электролита и попадания его на кожу или глаза, немедленно промойте эти места проточной водой. Если электролит попал в глаза, промойте их проточной водой в течение 15 минут и обратитесь к врачу.

При написании статьи использованы материалы, любезно предоставленные г-ном Isidor Buchmann, основателем и главой Канадской компании Cadex Electronics Inc. [3].

 

 




Поделиться с друзьями:


Дата добавления: 2015-05-10; Просмотров: 1186; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.