КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
I неподвижная часть
Устройство электрической машины постоянного тока Электрические машины, определение, назначение, обратимость машин Электрической машиной называют устройство, преобразующее или механическую энергию в электрическую (генератор), или электрическую энергию в механическую (электродвигатель) Электрические машины разделяют по назначению на 2 основных вида: электрические генераторы и электрические двигатели. Генераторы предназначены для выработки электрической энергии, а электродвигатели – для приведения в движение колесных пар электрических локомотивов, вращение валов вентиляторов, компрессоров и т.п. В электрических машинах происходит процесс преобразования энергии. Генераторы преобразуют механическую энергию в электрическую. Это означает, что для работы генератора надо вращать его вал каким-либо двигателем. На тепловозе, например, генератор приводят во вращение дизелем, на тепловой электростанции – паровой турбиной, на гидроэлектростанции – водяной турбиной. Электрические двигатели, наоборот, преобразуют электрическую энергию в механическую. Поэтому для работы двигателя его надо соединить проводами с источником электрической энергии или включить в электрическую сеть. Электрические машины обратимы. Это значит, что одна и та же машина может работать и как генератор, и как двигатель. Электрическая машина состоит из двух частей: II подвижная часть. Неподвижная часть электрической машины состоит из:
Как корпус станина служит для: - крепления остальных деталей машины - для защиты внутренних деталей машины от пыли, грязи и т.д. - для защиты потребителей (людей) от вращающихся частей машины. Как магнитопровод станина служит для замыкания по ней основного магнитного потока. Станина изготавливается литьём из стали высокой прочности и высокой магнитной проницаемости.
2. Главные полюса служат для создания основного магнитного потока (магнитного поля). Полюс состоит из: - сердечника (магнитопровода), набранного из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи. - обмотки главных полюсов (обмотки возбуждения магнитного потока) изготавливаются из медного провода круглого сечения. - полюсные наконечники имеют вид верхушки синусоиды для того, чтобы магнитная индукция в зазоре между полюсами изменялась бы по синусоидальному закону.
3. Дополнительные полюса служат для улучшения работы машины большой мощности, устройство аналогично устройству главных полюсов. Количество дополнительных полюсов кратно 2 и равно количеству главных.
4. Щетки со щеткодержателями выполняют две роли: а) если электрическая машина работает в режиме генератора, то электрический ток проходит по цепочке: обмотка якоря – коллектор – щетки – нагрузка (потребитель) во внешней цепи. б) если электрическая машина работает в режиме электродвигателя, то ток проходит по цепочке: внешний источник питания – щетки – коллектор – обмотка якоря Щетки изготавливаются из графита с добавлением порошка меди для повышения электропроводности и устойчивости к стиранию. Щетки взаимозаменяемы без дополнительного разбора конструкции электрической машины. 5. Боковые крышки машины с подшипниковыми узлами закрывают машину по бокам и служат для крепления вала.
Подвижная часть электрической машины состоит из:
а) если машина работает в режиме генератора то при вращении якоря в обмотке якоря возникает ЭДС. б) если машина работает в режиме двигателя, то от внешнего источника питания ток попадает в обмотку якоря, в результате чего якорь начинает вращаться. Якорь выполняет роль магнитопровода и набирается из отдельных листов электротехнической стали для уменьшения потерь на вихревые токи. В теле якоря сверлят вентиляционные каналы, по которым проходит охлаждающий воздух. Проводники обмотки якоря закрепляются во внешних пазах якоря. Каждый проводник обмотки якоря припаивается к соответствующей пластине коллектора.
1. Коллектор 2. Щётки 3. Сердечник якоря 4. Сердечник главного полюса 5. Обмотка возбуждения главного полюса 6. Станина 7. Подшипниковый щит 8. Вентилятор 9. Обмотка якоря
1. Классификация генераторов постоянного тока по способу возбуждения магнитного потока
Различают генераторы независимого возбуждения и генераторы с самовозбуждением. В генераторах независимого возбуждения основной магнитный поток создается либо постоянным магнитом, либо электромагнитом (обмоткой возбуждения), питаемым от источника постоянного тока. Генераторы независимого возбуждения находят применение в схемах автоматики, в двигатель-генераторных агрегатах, когда требуется изменять не только значение, но и полярность напряжения на зажимах, а также в качестве тахогенераторов, предназначенных для дистанционного измерения частоты вращения. Недостатком этих машин является необходимость иметь отдельный источник энергии для питания обмотки возбуждения или постоянные магниты. В генераторах с самовозбуждением питание обмотки главных полюсов осуществляется напряжением самого генератора. При этом отпадает необходимость в отдельном источнике питания. В зависимости от схемы включения обмотки возбуждения различают генераторы параллельного, последовательного и смешанного возбуждения. Генераторы постоянного тока параллельного возбуждения находят широкое применение в качестве бортовых источников питания, на подвижных объектах: кораблях, самолетах, автомобилях. Генераторы последовательного возбуждения используют редко. Генераторы со встречным включением обмоток используют в качестве сварочных генераторов.
2. Классификация электродвигателей постоянного тока по способу возбуждения магнитного потока Свойства электродвигателей постоянного тока определяются в основном способом включения обмотки возбуждения. В зависимости от этого различают электродвигатели: 1) с независимым возбуждением: обмотка возбуждения питается от постороннего источника постоянного тока; 2) с параллельным возбуждением: обмотка возбуждения подключена параллельно обмотке якоря; 3) с последовательным возбуждением: обмотка возбуждения включена последовательно с обмоткой якоря; 4) со смешанным возбуждением: он имеет две обмотки возбуждения, одна подключена параллельно обмотке якоря, а другая – последовательно с ней. Двигатели с последовательным возбуждением применяют во всех тяговых приводах (электровозы, тепловозы, Электропоезда, электрокары), а также в приводах грузоподъемных механизмов 3. Устройство асинхронного двигателя с фазным ротором Асинхронный двигатель – простейший из электрических машин, имеет 2 основные части статор и ротор. Статор состоит из чугунной станины, к которой закреплен магнитопровод в виде полого цилиндра, между станиной и сердечником оставлен зазор через который проходит охлаждающий воздух. Для уменьшения потерь на вихревые токи магнитопровод набирают из тонких листов электротехнической стали, изолированных друг от друга лаком. В пазы, вырезанные по внутренней окружности статора укладывают обмотку и закрепляют клиньями. Ротор набирают из тонких листов электротехнической стали, в пазах ротора размещают фазную обмотку. Устройство фазной обмотки ротора аналогично устройству обмотки статора. Концы фазной обмотки ротора соединяют с контактными кольцами и через щетки соединяют с регулировочными или пусковыми реостатами. Контактные кольца из латуни или меди укрепляются на валу двигателя с помощью изолирующих прокладок. Щеткодержатель с угольными или медно-графитовыми щетками крепят на подшипниковом щите. 4. Принцип действия асинхронного двигателя Основан на использовании вращающегося магнитного поля и основных законах электротехники. При включении двигателя в сеть трехфазного тока в статоре образуется вращающееся магнитное поле, силовые линии которого пересекают стержни или катушки обмотки ротора. Согласно закону электромагнитной индукции, в обмотке ротора создается ЭДС пропорционально частоте пересечения силовых линий и в короткозамкнутом роторе возникают значительные токи. По закону Ампера на проводники с током, находящиеся в магнитном поле, действуют силы, которые по принципу Ленца стремятся устранить причину вызывающую ток. Таким образом ротор раскручивается в направлении вращения поля и вращается с частотой меньшей частоты вращения поля, то есть не синхронно с полем, или асинхронно. 5. Скольжение и частота вращения ротора асинхронного Частота вращения магнитного поля статора – n1, а частота вращения ротора- n2, причем n2< n1. частоту вращения магнитного поля относительно ротора, т.е. разность «n1- n2» называют скольжением и обозначают s = (n1- n2)/ n1. Скольжение зависит от нагрузки двигателя. Скольжение – важнейшая характеристика двигателя, через него выражается ЭДС и ток ротора, вращающий момент, частота вращения ротора. У большинства асинхронных двигателей s равно 2-5%. При неподвижном роторе (n2=0) s=1. Таким скольжением обладает двигатель в момент пуска. Асинхронные машины, как и другие электрические машины обратимы. 6. Коэффициент полезного действия асинхронного двигателя Потери энергии в асинхронном двигателе складываются из потерь в обмотках статора и ротора, потерь в магнитопроводе, механических и добавочных потерь. Потери в обмотках Pм (потери в меди) пропорционально квадрату тока и существенно изменяются при изменении нагрузки двигателя. ŋ= P1-(Pм+Pc +PМех +Pдоб) / P1. Где P1 – мощность, потребляемая двигателем из сети, Pc - потери в стали, PМех – механические потери, Pм – потери в меди, Pдоб –добавочные потери. При номинальном режиме работы двигателя КПД 0,9 – 0,95% Важная характеристика коэффициент мощности cosφ. Он показывает, какая часть полной мощности, поступающей из сети, расходуется на покрытие потерь и преобразуется в механическую работу. 7. Синхронный генератор Ротор синхронных машин вращается синхронно с вращающимся магнитным полем, т.к. частота вращения ротора с магнитным полем одинакова, в обмотке ротора не индуцируются токи. Обмотка ротора получает питание от источника постоянного тока. Устройство статора синхронной машины аналогично устройству статора асинхронной. В пазы статора укладывают трехфазную обмотку, концы которой выводят на клеммовую панель. Ротор изготавливают в виде постоянного магнита. Роторы могут быть явнополюсными и неявнополюсными. Синхронные генераторы с явнополюсными роторами приводятся в действие тихоходными турбинами гидроэлектростанций. Синхронные генераторы с неявнополюсными роторами приводятся в действие паровыми или газовыми турбинами теплоэлектростанций. Частота индуцированной ЭДС синхронного генератора f = pn/ 60, где p – число пар полюсов, n/60 – число оборотов ротора в секунду. 8. Синхронный двигатель
Устройство статора синхронного двигателя аналогично устройству статора асинхронного двигателя. Ротор синхронного двигателя представляет собой электромагнит или постоянный магнит. Важное достоинство синхронного двигателя постоянство частоты вращения. Достоинства: постоянство частоты вращения независимо от механической нагрузки на валу, меньшее чем у асинхронных двигателей чувствительность к колебаниям напряжения. Недостатки: сложность конструкции, сложность пуска в ход, трудность регулирования частоты вращения.
Дата добавления: 2015-05-07; Просмотров: 1545; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |