Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 5. Барометрическая формула. Распределение Больцмана




Барометрическая формула определяет зависимость атмосферного давления воздуха от высоты. Молекулы воздуха находятся, с одной стороны, в потенциальном поле сил тяготения Земли, а, с другой –, в состоянии теплового хаотического движения, что приводит к некоторому стационарному состоянию, при котором давление газа с высотой убывает.

Если атмосферное давление на высоте h равно р (рис. 4), то на высоте h+dh оно равно p+dp, причем при dh >0 изменение давления dp <0.

Так как dh настолько мало, что при изменении высоты h в этих пределах плотность воздуха можно считать постоянной, то разность давлений:

, то есть .

Рис. 4

Выражение для плотности газа можно получить из уравнения состояния идеального газа , а именно ,

где m – масса газа, – молярная масса газа.

Тогда или .

С изменением высоты от 0 до h давление изменяется от р 0 до р (рис. 4). Поэтому, интегрируя в этих пределах предыдущее уравнение, получим:

, то есть ,

откуда

.

Это выражение называется барометрической формулой, где р 0 – давление на нулевом уровне отсчета высоты h, то есть на уровне, где принято h = 0.

Барометрическую формулу можно преобразовать в зависимость концентрации молекул воздуха n от высоты h, если воспользоваться уравнением состояния идеального газа p=nkT:

,

где n – концентрация молекул воздуха на высоте h,

n 0 – концентрация молекул воздуха на высоте h= 0.

Так как (m 0 – масса одной молекулы, – постоянная Авогадро), a , то или .

В этой формуле , где U – потенциальная энергия молекулы массой m 0, находящейся в поле сил тяготения Земли на высоте h от уровня, на котором потенциальная энергия молекул воздуха принята равной нулю, а концентрация молекул обозначена как n 0. Тогда n соответствует концентрации молекул в том месте, где потенциальная энергия молекулы воздуха равна U. Таким образом, получено распределение молекул по потенциальной энергии в силовом поле (распределение Больцмана).




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 372; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.