Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

История развития электроники




1. Введение

Электроника представляет собой бурноразвивающуюся отрасль науки и техники. Она изучает физические основы и практическое применение различных электронных приборов. К физической электронике относят: электронные и ионные процессы в газах и проводниках, на поверхности раздела между вакуумом и газом, твердыми и жидкими телами. К технической электронике относят изучение устройства электронных приборов и их применение. Область, посвященная применению электронных приборов в промышленности называется Промышленной Электроникой.

Успехи электроники в значительной степени стимулированы развитием радиотехники. Электроника и радиотехника настолько тесно связаны, что в 50–е годы их объединяют и эту область техники называют Радиоэлектроника. Радиоэлектроника сегодня это комплекс областей науки и техники, связанных с проблемой передачи, приема и преобразования информации при помощи эл./магнитных колебаний и волн в радио и оптическом диапазоне частот. Электронные приборы служат основными элементами радиотехнических устройств и определяют важнейшие показатели радиоаппаратуры. С другой стороны многие проблемы в радиотехнике привели к изобретению новых и совершенствованию действующих электронных приборов. Эти приборы применяются в радиосвязи, телевидении, при записи и воспроизведении звука, в радиолакации, в радионавигации, в радиотелеуправлении, радиоизмерении и других областях радиотехники.

Современный этап развития техники характеризуется все возрастающим проникновении электроники во все сферы жизни и деятельности людей. По данным американской статистики, до 80% от объема всей промышленности занимает электроника. Достижения в области электроники способствуют успешному решению сложнейших научно–технических проблем: повышению эффективности научных исследований, созданию новых видов машин и оборудования. Разработке эффективных технологий и систем управления: получению материала с уникальными свойствами, совершенствованию процессов сбора и обработки информации. Охватывая широкий круг научно–технических и производственных проблем, электроника опирается на достижения в различных областях знаний. При этом с одной стороны электроника ставит задачи перед другими науками и производством, стимулируя их дальнейшее развитие, и с другой стороны вооружает их качественно новыми техническими средствами и методами исследования. Предметами научных исследований в электронике являются:

1. Изучение законов взаимодействия электронов и других заряженных частиц с эл./магнитными полями.

2. Разработка методов создания электронных приборов, в которых это взаимодействие используется для преобразования энергии с целью передачи, обработки и хранения информации, автоматизации производственных процессов, создания энергетических устройств, создания контрольно–измерительной аппаратуры, средств научного эксперимента и других целей.

Исключительно малая инерционность электрона позволяет эффективно использовать взаимодействие электронов, как с макрополями внутри прибора, так и микрополями внутри атома, молекулы и кристаллической решетки, для генерирования преобразования и приема эл./магнитных колебаний с частотой до 1000ГГц. А также инфракрасного, видимого, рентгеновского и гамма излучения. Последовательное практическое освоение спектра эл./магнитных колебаний является характерной чертой развития электроники.

 

2. Фундамент развития электроники

 

2.1 Фундамент электроники был заложен трудами физиков в XVIII– XIX в. Первые в мире исследования электрических разрядов в воздухе осуществили академики Ломоносов и Рихман в России и независимо от них американский ученый Франкель.

В 1802 году профессор физики Петербургской медико-хирургической академии – Василий Владимирович Петров впервые, за несколько лет до английского физика Дэви, обнаружил и описал явление электрической дуги в воздухе между двумя угольными электродами. Кроме этого фундаментального открытия, Петрову принадлежит описание разнообразных видов свечения разряженного воздуха при прохождении через него электрического тока. В России значимость работ не было понято и они были забыты. Поэтому открытие дугового разряда было приписано английскому физику Дэви.

Начавшееся изучение спектров поглощения и излучения различных тел привело немецкого ученого Плюккера к созданию Гейслеровых трубок. В 1857 году Плюккер установил, что спектр Гейслеровой трубки, вытянутой в капилляр и помещенной перед щелью спектроскопа, однозначно характеризует природу заключенного в ней газа и открыл первые три линии так называемой Бальмеровской спектральной серии водорода. Ученик Плюккера Гитторф изучал тлеющий разряд и в 1869 году опубликовал серию исследований эл./проводимости газов. Ему совместно с Плюккером принадлежат первые исследования катодных лучей, которые продолжил англичанин Крукс.

Изучением явления газового разряда занимались Томсон, Таундсен, Астон, Резерфорд, Крукс, Ричардсон. Из русских физиков над исследованием дуги и практическим ее применением для освещения работали: Яблочков (1847–1894), Чиколев (1845–1898), Славянов(сварка, переплавка металлов дугой), Бернардос(применение дуги для освещения). Несколько позднее исследованием дуги занимались Лачинов и Миткевич. Несамостоятельным разрядом воздуха занимался Столетов (1881–1891) - фотоэффект.

В 1905 году Эйнштейн дал толкование фотоэффекту, связанного со световыми квантами и установил закон, названный его именем. Таким образом фотоэффект, открытый Столетовым, характеризует следующие законы:

1) Закон Столетова – количество имитируемых в единицу времени электронов пропорционально, при прочих равных условиях, интенсивности падающего на поверхность катода света. Равные условия здесь надо понимать как освещение поверхности катода монохраматическим светом одной и той же длины волны. Или светом одного и того же спектрального состава.

2)

Максимальная скорость электронов покидающих поверхность катода при внешнем фотоэффекте определяется соотношением:

величина кванта энергии монохроматического излучения падающего на поверхность катода.

– Работа выхода электрона из металла.

3) Скорость фотоэлектронов покидающих поверхность катодов не зависит от интенсивности падающего на катод излучения.

Впервые обнаружил внешний фотоэффект немецкий физик Герц(1887г.).

В 1881 году Эдисон впервые обнаружил явление термоэлектронной эмиссии. Проводя различные эксперименты с угольными лампами накаливания, он построил лампу содержащую в вакууме, кроме угольной нити, еще металлическую пластинку А от которой был выведен проводник Р. Если соединить провод через гальванометр с положительным концом нити, то через гальванометр идет ток, если соединить с отрицательным, то ток не обнаруживается. Это явление было названо эффектом Эдисона. Явление испускания электронов раскаленными металлами и другими телами в вакууме или в газе было названо термоэлектронной эмиссией.

 

3. Этапы развития электроники

 

1 этап. К первому этапу относится изобретение в 1809 году русским инженером Ладыгиным лампы накаливания.

Открытие в 1874 году немецким ученым Брауном выпрямительного эффекта в контакте металл–полупроводник. Использование этого эффекта русским изобретателем Поповым для детектирования радиосигнала позволило создать ему первый радиоприемник. Датой изобретения радио принято считать 7 мая 1895 г. когда Попов выступил с докладом и демонстрацией на заседании физического отделения русского физико–химического общества в Петербурге. А 24 марта 1896 г. Попов передал первое радиосообщение на расстояние 350м. Успехи электроники в этот период ее развития способствовали развитию радиотелеграфии. Одновременно разрабатывали научные основы радиотехники с целью упрощения устройства радиоприемника и повышения его чувствительности. В разных странах велись разработки и исследования различных типов простых и надежных обнаружителей высокочастотных колебаний – детекторов.

 

2 этап.

Второй этап развития электроники начался с 1904 г. когда английский ученый Флеминг сконструировал электровакуумный диод. Основными частями диода (рис. 2) являются два электрода находящиеся в вакууме. Металлический анод (А) и металлический катод (К) нагреваемый электрическим током до температуры при которой возникает термоэлектронная эмиссия.

При высоком вакууме разряжение газа между электродами таково, что длина свободного пробега электронов значительно превосходит расстояние между электродами, поэтому при положительном, относительно катода напряжении на аноде Va электроны движутся к аноду, вызывая ток Ia в анодной цепи. При отрицательном напряжении анода Va эмитируемые электроны возвращаются на катод и ток в анодной цепи равен нулю. Таким образом электровакуумный диод обладает односторонней проводимостью, что используется при выпрямлении переменного тока. В 1907 г. американский инженер Ли де Форест установил, что поместив между катодом (К) и анодом (А) металлическую сетку (с) и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа – триод (рис. 3). Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Если плотность газа наполняющего баллон настолько высока, что длина свободного пробега электронов оказывается меньше расстояния между электродами, то электронный поток, проходя через межэлектродное расстояние взаимодействует с газовой средой в результате чего свойства среды резко изменяются. Газовая среда ионизируется и переходит в состояние плазмы, характеризующееся высокой электропроводностью. Это свойство плазмы было использовано американским ученым Хеллом в разработанном им в 1905 г. газотроне – мощном выпрямительном диоде наполненном газом. Изобретение газотрона положило начало развитию газоразрядных электровакуумных приборов. В разных странах стало быстро развиваться производство электронных ламп. Особенно сильно это развитие стимулировалось военным значением радиосвязи. Поэтому 1913 – 1919 годы – период резкого развития электронной техники. В 1913 г. немецкий инженер Мейснер разработал схему лампового регенеративного приемника и с помощью триода получил незатухающие гармонические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции на ламповые, что практически решило проблему радиотелефонии. С этого времени радиотехника становится ламповой. В России первые радиолампы были изготовлены в 1914 году в Санкт–Петербурге консультантом русского общества беспроволочного телеграфирования Николаем Дмитриевичем Папалекси, будущим академиком АН СССР. Папалекси окончил Страсбургский университет, где работал под руководством Брауна. Первые радиолампы Папалекси из–за отсутствия совершенной откачки были не вакуумными, а газонаполненными(ртутными). С 1914 – 1916 гг. Папалекси проводил опыты по радиотелеграфии. Работал в области радиосвязи с подводными лодками. Руководил разработкой первых образцов отечественных радиоламп. С 1923 – 1935 гг. совместно с Мандельштамом руководил научным отделом центральной радиолаборатории в Ленинграде. С 1935 года работал председателем научного совета по радиофизике и радиотехнике при академии наук СССР.

Первые в России электровакуумные приемо–усилительные радиолампы были изготовлены Бонч – Бруевичем. Он родился в г. Орле (1888 г.). В 1909 году окончил инженерное училище в Петербурге. В 1914 г. окончил офицерскую электротехническую школу. С 1916 по 1918 г. занимался созданием электронных ламп и организовал их производство. В 1918 году возглавил Нижегородскую радиолабораторию, объединив лучших радиоспециалистов того времени (Остряков, Пистолькорс, Шорин, Лосев). В марте 1919 года в нижегородской радиолаборатории началось серийное производство электровакуумной лампы РП–1. В 1920 году Бонч–Бруевич закончил разработку первых в мире генераторных ламп с медным анодом и водяным охлаждением, мощностью до 1 кВт. Видные немецкие ученые, ознакомившись с достижениями Нижегородской лаборатории признали приоритет России в создании мощных генераторных ламп. Большие работы по созданию электровакуумных приборов развернулись в Петрограде. Здесь работали Чернышев, Богословский, Векшинский, Оболенский, Шапошников, Зусмановский, Александров. Важное значение для развития электровакуумной техники имело изобретение нагреваемого катода. В 1922 году в Петрограде был создан электровакуумный завод, который слился с электроламповым заводом "Светлана". В научно–исследовательской лаборатории этого завода, Векшинским были проведены многосторонние исследования в области физики и технологии электронных приборов (по эмиссионным свойствам катодов, газовыделению металла и стекла и другие).

Переход от длинных волн к коротким и средним, и изобретение супергетеродина и развитие радиовещания потребовали разработки более совершенных ламп, чем триоды. Разработанная в 1924 г. и усовершенствованная в 1926 г. американцем Хеллом экранированная лампа с двумя сетками (тетрод), и предложенная им же 1930 г. электровакуумная лампа с тремя сетками (пентод), решили задачу повышения рабочих частот радиовещания. Пентоды стали самыми распространенными радиолампами. Развитие специальных методов радиоприема вызвало в 1934–1935 годах появления новых типов многосеточных частотопреобразовательных радиоламп. Появились также разнообразные комбинированные радиолампы, применение которых позволило значительно уменьшить число радиоламп в приемнике. Особенно наглядно взаимосвязь между электровакуумной и радиотехникой проявилась в период, когда радиотехника перешла к освоению и использованию диапазона УКВ (ультракороткие волны – метровые, дециметровые, сантиметровые и миллиметровые диапазоны). Для этой цели, во–первых, были значительно усовершенствованы уже известные радиолампы. Во–вторых, были разработаны электровакуумные приборы с новыми принципами управления электронными потоками. Сюда относятся многорезонаторные магнетроны(1938г), клистроны(1942г), лампы обратной волны ЛОВ (1953г). Такие приборы могли генерировать и усиливать колебания очень высоких частот, включая миллиметровый диапазон волн. Эти достижения электровакуумной техники обусловили развитие таких отраслей как радионавигация, радиолакация, импульсная многоканальная связь.

Советский радиофизик Рожанский в 1932 г. предложил создать приборы с модуляцией электронного потока по скорости. По его идее Арсеньев и Хейль в 1939 г. построили первые приборы для усиления и генерации колебаний СВЧ (сверх высокие частоты). Большое значение для техники дециметровых волн имели работы Девяткова, Хохлова, Гуревича, которые в 1938 – 1941 годах сконструировали триоды с плоскими дисковыми электродами. По этому же принципу в Германии были изготовлены металлокерамические лампы, а в США маячковые лампы.

Созданные в 1943г. Компфнером лампы бегущей волны(ЛБВ) обеспечили дальнейшее развитие СВЧ систем радиорелейной связи. Для генерации мощных СВЧ колебаний в 1921 г. был предложен магнетрон, его автор Хелл. По магнетрону исследования проводили русские ученые – Слуцкий, Грехова, Штейнберг, Калинин, Зусмановский, Брауде, в японии – Яги, Окабе. Современные магнетроны берут свое начало в 1936 – 1937 годах, когда по идее Бонч–Бруевича его сотрудники, Алексеев и Моляров, разработали многорезонаторные магнетроны.

В 1934 году сотрудники центральной радиолаборатории, Коровин и Румянцев, провели первый эксперимент по применению радиолакации и определению летящего самолета. В 1935 г. теоретические основы радиолакации были разработаны в Ленинградском физико–техническом институте Кобзаревым. Одновременно с разработкой вакуумных электроприборов, на втором этапе развития электроники, создавались и совершенствовались газоразрядные приборы.

В 1918 г. в результате исследовательской работы доктора Шретера немецкая фирма "Пинтш" выпустила первые промышленные лампы тлеющего разряда на 220 В. начиная с 1921 года голландская фирма Philips выпустила первые неоновые лампы тлеющего разряда на 110 В. В США первые миниатюрные неоновые лампы появились в 1929 г.

В 1930 году Ноулз впервые опубликовал описание неоновой лампы тлеющего разряда, в которой возникновение разряда между анодом и катодом вызывается третьим электродом. Первый тиратрон тлеющего разряда (рис. 4), который нашел широкое применение, сконструировал в 1936 году изобретатель фирмы "Белл Телефон". В то время он именовался "Лампа – 313А". В этом же году другой изобретатель – Витли, предложил свою конструкцию тиратрона. Где с помощью тока (Ic) управляющего электрода (с) создается необходимый начальный уровень концентрации электронов и ионов, в вакуумном промежутке анод – катод. Этот уровень обеспечивает появление тлеющего разряда. Этот же эффект используется в декатроне, предложенном фирмой "Эриксон". Декатрон представляет собой десятикатодный переключатель(рис. 5), состоящий из одного анода (А) и десяти катодов (К1, К2, К3…, К10) и расположенных между катодами подкатодов (1, 2). Заряд переносится с одного катода на другой путем последовательной подачи пар управляющих импульсов на подкатоды. Пусть существует тлеющий заряд между катодом К1 и анодом А, если потенциал подкатода 1 будет ниже, чем К1 заряд перекинется на подкатод 1. Подавая отрицательный импульс на подкатод 1 и следом на 2, переносят заряд на К1 и К2.

 

Первый советский тиратрон тлеющего разряда был разработан в 1940 году в лаборатории завода "Светлана". По своим параметрам он был близок к параметрам фирмы "RCA". Свечение, сопровождающее газовый разряд, стали использовать в знаковых газоразрядных индикаторах: при подаче напряжения на тот или иной катод (знак) возникает светящееся изображение.

В 30–е годы были заложены основы радиотелевидения. Первые предложения о специальных передающих трубках сделали независимо друг от друга Константинов и Катаев. Подобные же трубки названные иконоскопами построил в США Владимир Константинович Зворыкин. В 1912 г. он окончил Петербургский экономический институт. В 1914 г. колледж "Де Франс" в Париже. В 1917 эмигрировал в США. В 1920 г. поступил в фирму "Вестингаус Электрик". В 1929 г. возглавил лабораторию американской радиокорпорации "Камдем и Пристон". В 1931 г. Зворыкин создал первый иконоскоп – передающую трубку, которая сделала возможным развитие электронных телевизионных систем. В 1933 г. Шмаков и Тимофеев предложили более чувствительные передающие трубки – супериконоскоп. Позволивший вести телевизионные передачи без сильного искусственного освещения. Шмаков родился в 1885 г., в 1912 г. закончил МГУ, работал (1924–30 гг.) в МВТУ, (1930–32 гг.) работал в МЭИ, в 1933 изобрел супериконоскоп, (1935 – 37 гг.) заведовал лабораторией в Всесоюзном НИИ телевидения в Ленинграде. Тимофеев родился в 1902 г., в 1925 г. закончил МГУ, (1925–28 гг.) работал в МВТУ, в 1933 г. вместе со Шмаковым изобрел иконоскоп. Остальные труды относились к области: фотоэффекта, вторичной электронной эмиссии, разрядов в газах, электронной оптики. Разработал конструкции электронных умножителей, электронно–оптических преобразователей.

В 1939 г. советский ученый Брауде предложил идею создания еще более чувствительной передающей трубки названной суперортикон. К 1930 годам относятся первые эксперименты с очень простыми передающими устройствами получившими название видикон. Идея создания видикона была выдвинута Чернышевым в 1925 году. Первые практические образцы видиконов появились в США в 1946 г.

Иконоскоп (рис. 7) представляет собой электроннолучевую трубку в которой с помощью электронного луча и светочувствительной мозаики происходит преобразование световой энергии в электрические видеоимпульсы. Иконоскоп имеет стеклянный баллон (4) в котором находится светочувствительная мозаика (6), состоящая из нескольких миллионов изолированных друг от друга зерен серебра (Ag) покрытых цезием (Cs). Мозаика наносится на тонкую слюдяную пластинку размером 100х100 мм. На обратной стороне слюдяной пластины находится сигнальная пластина (5), представляющая собой миниатюрный фотокатод, излучающий свободные электроны под действием света. Каждое зерно светочувствительной мозаики совместно с сигнальной пластиной можно рассматривать как элементарный конденсатор со слюдяным диэлектриком. При освещении мозаики через линзу (2) светом отраженным от передаваемого изображения (1), мозаика превращается в систему конденсаторов заряд которых пропорционален освещенности соответствующих зерен. Свободные электроны эмитируемые фотокатодом (5) собираются коллектором (3) на который падает положительное по отношению к сигнальной пластине напряжение. Коллектором служит проводящий слой нанесенный на внутреннюю стенку иконоскопа. Электронный прожектор (8) создает луч, который с помощью отклоняющей системы (7) построчно обегает все зерна мозаики и снимает с них положительный заряд. Свободные электроны электронного луча занимают место электронов вылетевших из мозаики в результате фотоэлектронной эмиссии. Разряд микроскопических конденсаторов вызывает прохождение токов через резистор нагрузки (Rн) и цепь катода (К) электронного прожектора. Падение напряжения на резисторе (Rн) пропорционально освещенности элементарных участков мозаики с которых в данный момент электронный луч снимает положительный заряд. Недостатком иконоскопа является малый КПД и низкая чувствительность. Для работы такого иконоскопа требуется очень большая освещенность передаваемого объекта.

На (рис. 8) приведена принципиальная схема видикона. На внутреннюю торцевую поверхность баллона видикона наносится полупрозрачный слой золота, исполняющего роль сигнальной пластины (9). На этот слой наносится фоторезист (8) – это кристаллический Селен или трехсернистая Сурьма. Свободные электроны, излучаемые катодом (К), формируются в электронный луч с помощью управляющего электрода (11) и двух ускоряющих анодов (5 и 6). Фокусировка луча осуществляется с помощью фокусирующей катушки (3). Сетка (7) расположенная перед фоторезистом создает однородное тормозящее поле, которое препятствует к образованию ионного пятна и обеспечивает нормальное падение электронного луча. Отклоняющие катушки (4) питаются пилообразными токами и заставляют электронный луч построчно обегать рабочий участок фоторезиста(8). Корректирующие (1) и центрирующие (2) катушки дают возможность перемещать электронный луч в 2–х взаимно перпендикулярных областях. Электропроводность фоторезиста зависит от его освещенности. Электронный луч, попадая на поверхность мишени, выбивает вторичные электроны, число которых больше, чем первичных, потому поверхность мишени, обращенная к электронному прожектору, заряжается положительно до потенциала, близкого потенциалу ускоряющего анода (5). Потенциалы другой стороны мишени, обращенной к передаваемому изображению, близки к потенциалу сигнальной пластины. Каждый элемент мишени можно рассматривать как конденсатор с потерями, электропроводность, которого зависит от интенсивности освещения. Изменение потенциала элементов мишени электронным лучом и является видеосигналом снимаемым с резистора нагрузки Rн. Напряжение снимаемое с резистора Rн пропорционально освещенности того элемента на котором в данный момент находится электронный луч.

 

4. Третий период развития электроники

4.1 Изобретение точечного транзистора.

Третий период развития электроники – это период создания и внедрения дискретных полупроводниковых приборов, начавшийся с изобретения точечного транзистора. В 1946 году при лаборатории "Белл Телефон" была создана группа во главе с Уильямом Шокли, проводившая исследования свойств полупроводников на Кремнии (Sc) и Германии (Ge) [Литература: Дж. Грик "Физика XX в. Ключевые эксперименты", М. 1978 г.] Группа проводила как теоретические, так и экспериментальные исследования физических процессов на границе раздела двух полупроводников с различными типами электрической проводимости. В итоге были изобретены: трехэлектродные полупроводниковые приборы – транзисторы. В зависимости от количества носителей заряда транзисторы были разделены на:

– униполярные (полевые), где использовались однополярные носители.

– биполярные, где использовались разнополярные носители(электроны и дырки).

Идеи создания полевых транзисторов появились раньше, чем биполярных, но практически реализовать эти идеи не удавалось. Успех был достигнут 23 декабря 1947 г. сотрудниками лаборатории "Белл Телефон"– Бардиным и Браттейном, под руководством Шокли. Бардин и Браттейн в результате многочисленных вариантов получили работающий полупроводниковый прибор. Информация об этом изобретении появилась в журнале "The Physical Review" в июле 1948 года. Вот как об этом изобретении писали сами авторы: "Приводится описание трехэлементного электронного устройства, использующего вновь открытый принцип, который основан на применение полупроводника в качестве основного элемента. Устройство может быть использовано, как усилитель, генератор и в других целях, для которых обычно применяются вакуумные электронные лампы. Устройство состоит из трех электродов размещенных на германиевом блоке, как показано на Рис. 4.1

Два из этих электродов называющиеся, эмиттером (Э) и коллектором (К), являются выпрямителями с точечным контактом и располагаются в непосредственной близости друг от друга на верхней поверхности. Третий электрод, большой площади и маленького радиуса, нанесен на основание – базу (Б). Использовался Ge n–типа. Точечные контакты изготовлялись как из Вольфрама так и из фосфористой бронзы. Каждый точечный контакт в отдельности вместе с электродом базы образует выпрямитель с высоким обратным сопротивлением. Ток, направление которого по отношению ко всему объему кристалла является прямым, создается дырками т.е. носителями, имеющими противоположный знак по отношению к носителям обычно присутствующим в избытке внутри объема Ge. Когда два точечных контакта расположены очень близко друг к другу и к ним приложено постоянное напряжение, контакты оказывают взаимное влияние друг на друга. Благодаря этому влиянию возможно использовать данное устройство для усиления сигнала переменного тока. Электрическая цепь с помощью которой можно этого добиться показана на Рис. 4.1 К эмиттеру приложено небольшое положительное напряжение в прямом направлении, которое вызывает ток в несколько миллиампер через поверхность. К коллектору прикладывается обратное напряжение, достаточно большое для того чтобы ток коллектора был равным или больше тока эмиттера(Ik ≥ Iэ). Знак напряжения на коллекторе таков, что он притягивает дырки идущие от эмиттера. В результате большая часть тока эмиттера проходит через коллектор. Коллектор создает большое сопротивление для электронов текущих в полупроводник, и почти не препятствует потоку дырок в точечный. Если ток эмиттера модулировать напряжением сигнала, то это приводит к соответствующему изменению тока коллектора. Была получена большая величина отношения выходного напряжения к входному, такого же порядка, что и отношение импедансов, выпрямляющего точечного контакта в обратном и прямом направлении. Таким образом возникает соответствующее усиление мощности выходного сигнала. Получили выигрыш в мощности в 100 раз. Подобные устройства работали как усилители при частотах вплоть до 10 МГц(мегагерц)."

Устройство изобретенное Бардиным и Браттейном было названо точечным транзистором типа А и представлял собой конструкцию представленную на Рис. 4.2 Где (1) кристалл Германия, (2) вывод эмиттера, (3) вывод базы. Усиление сигнала осуществлялось за счет большого различия в величинах сопротивления, низкоомного входного и высокоомного выходного. Поэтому создатели нового прибора назвали его сокращенно – транзистором (в пер. с английского – "преобразователь сопротивления").

 

 

4.2 Изобретение плоскостного биполярного транзистора.

Одновременно, в период апрель 1947 – январь 1948 г., Шокли опубликовал теорию плоскостных биполярных транзисторов. Рассмотрев полупроводниковые выпрямительные устройства из кристаллов полупроводника, имеющего переход между областями p- и n- типа.(Рис. 4.3)

Такое устройство, называемое плоскостным полупроводниковым выпрямителем, обладает малым сопротивлением, когда р-область – положительна по отношению к n-области. Характеристики плоскостного выпрямителя можно точно определить теоретически. По сравнению с точечным, плоскостной выпрямитель допускает большую нагрузку т.к. площадь контакта можно сделать достаточно большой. С другой стороны с увеличением площади растет шунтирующая контактная емкость. Далее Шокли рассмотрел теорию плоскостного транзистора из кристалла полупроводника, содержащего два p-n перехода (Рис. 4.4) Положительная р-область является эмиттером, отрицательная р-область коллектором, n-область представляет собой базу. Таким образом вместо металлических точечных контактов используются две p-n области. В точечном транзисторе два металлических точечных контакта необходимо было располагать очень близко друг к другу, и в плоскостном транзисторе оба перехода должны располагаться очень близко друг к другу. Область базы очень тонкая – менее 25 мкм. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность. Для нормальной работы транзистора, как усилителя, необходимо чтобы на эмиттер было подано прямое, а на коллектор обратное смещение, по отношению к базе. Для p-n-p транзистора условие соответствует – положительному эмиттеру и отрицательному коллектору. Для n-p-n – обратные полярности т.е. отрицательный эмиттер и положительный коллектор.

Изобретение транзисторов явилось знаменательной вехой в истории развития электроники и поэтому его авторы Джон Бардин, Уолтер Браттейн и Уильям Шокли были удостоины нобелевской премии по физике за 1956 г.

4.4 История развития полевых транзисторов.

4.4.1 Первый полевой транзистор был запатентован в США в 1926/30гг., 1928/32гг. и 1928/33гг. Лилиенфельд – автор этих потентов. Он родился в 1882 году в Польше. С 1910 по 1926 г. был профессором Лейпцигского университета. В 1926 г. иммигрировал в США и подал заявку на патент.

Предложенные Лилиенфельдом транзисторы не были внедрены в производство. Транзистор по одному из первых патентов № 1900018 представлен на Рис. 4.6

 

 

Наиболее важная особенность изобретения Лилиенфельда заключается в том, что он понимал работу транзистора на принципе модуляции проводимости исходя из электростатики. В описании к патенту формулируется, что проводимость тонкой области полупроводникового канала модулируется входным сигналом, поступающим на затвор через входной трансформатор.

4.4.2

В 1935 году в Англии получил патент на полевой транзистор немецкий изобретатель О. Хейл

Схема из патента № 439457 представлена на Рис. 4.7 где:

1 – управляющий электрод

2 – тонкий слой полупроводника(теллур, йод, окись меди, пятиокись ванадия)

3,4 – омические контакты к полупроводнику

5 – источник постоянного тока

6 – источник переменного напряжения

7 – амперметр

 

Управляющий электрод (1) выполняет роль затвора, электрод (3) выполняет роль стока, электрод (4) роль истока. Подавая переменный сигнал на затвор, расположенный очень близко к проводнику, получаем изменение сопротивления полупроводника (2) между стоком и истоком. При низкой частоте можно наблюдать колебание стрелки амперметра (7). Данное изобретение является прототипом полевого транзистора с изолированным затвором.

 

4.4.3

Следующий период волны изобретений по транзисторам наступил в 1939 году, когда после трехлетних изысканий по твердотельному усилителю в фирме "BTL" (Bell Telephone Laboratories) Шокли был приглашен включиться в исследование Браттейна по медноокисному выпрямителю. Работа была прервана второй мировой войной, но уже перед отъездом на фронт Шокли предложил два транзистора. Исследования по транзисторам возобновились после войны, когда в середине 1945 г. Шокли вернулся в "BTL", а в 1946 г. туда же пришел Бардин.

В 1952 г. Шокли описал униполярный(полевой) транзистор с управляющим электродом, состоящим, как показано на рис. 4.8, из обратно смещенного p-n – перехода. Предложенный Шокли полевой транзистор состоит из полупроводникового стержня n-типа (канал n-типа) с омическими выводами на торцах. В качестве полупроводника использован кремний(Si).

Точное описание процессов в полевом транзисторе представляет определенные трудности. Поэтому, Шокли предложил упрощенную теорию униполярного транзистора в основном объясняющую свойства этого прибора. При изменении входного напряжения (исток-затвор) изменяется обратное напряжение на p-n-переходе, что приводит к изменению толщины запирающего слоя. Соответственно изменяется площадь поперечного сечения n-канала, через который проходит поток основных носителей заряда, т.е. выходной ток. При высоком напряжении затвора запирающий слой становится все толще и площадь поперечного сечения уменьшается до нуля, а сопротивление канала увеличивается до бесконечности и транзистор запирается.

 

4.4.4

В 1963 г. Хофштейн и Хайман описали другую конструкцию полевого транзистора, где используется поле в диэлектрике, расположенном между пластиной полупроводника и металлической пленкой. Такие транзисторы со структурой металл-диэлектрик-полупроводник называются МДП-транзисторы. В период с 1952 по 1970 гг. полевые транзисторы оставались на лабораторной стадии развития. Три фактора способствовали стремительному развитию полевых транзисторов в 70-е годы:

1) Развитие физики полупроводников и прогресс в технологии полупроводников, что позволило получить приборы с заданными характеристиками.

2) Создание новых технологических методов, таких как тонкопленочные технологии для получения структуры с изолированным затвором.

3) Широкое внедрение транзисторов в электрическое оборудование.

 

6. IV период развития электроники

 

6.1 Изобретение первой интегральной микросхемы

В 1960 году Роберт Нойс из фирмы Fairchild предложил и запатентовал идею монолитной интегральной схемы (Патент США 2981877) и применив планарную технологию изготовил первые кремниевые монолитные интегральные схемы. В монолитной интегральной схеме планарные диффузионные биполярные кремниевые транзисторы и резисторы соединены между собой тонкими и узкими полосками алюминия, лежащими на пассивирующем оксиде. Алюминиевые соединительные дорожки изготавливаются методом фотолитографии, путем травления слоя алюминия напыленного на всю поверхность оксида. Такая технология получила название – технология монолитных интегральных схем. Одновременно Килби из фирмы Texas Instruments изготовил триггер на одном кристалле германия, выполнив соединения золотыми проволочками. Такая технология получила название – технология гибридных интегральных схем. Апелляционный суд США отклонил заявку Килби и признал Нойса изобретателем монолитной технологии с оксидом на поверхности, изолированными переходами и соединительными дорожками на оксиде, вытравленными из осажденного слоя алюминия методом фотолитографии. Хотя очевидно, что и триггер Килби является аналогом монолитной ИМС.

Семейство монолитных транзисторно-транзисторных логических элементов с четырьмя и более биполярными транзисторами на одном кристалле кремния было выпущено фирмой Fairchild уже в феврале 1960 года и получило название "микрологика". Планарная технология Хорни и монолитная технология Нойса заложили в 1960 году фундамент развития интегральных микросхем, сначала на биполярных транзисторах, а затем 1965–85 гг. на полевых транзисторах и комбинациях тех и других. Малый разрыв во времени между идеей и серийным производством интегральных микросхем объясняется оперативностью разработчиков. Так в 1959 году Хорни проводя многочисленные опыты, сам отрабатывал технологию окисления и диффузии кремниевых пластин, чтобы найти оптимальную глубину диффузии бора и фосфора, и условия маскирования оксидом. Одновременно Нойс в темной комнате, по вечерам, в выходные дни упорно наносит и экспонирует фоторезист на множестве кремниевых пластин с оксидом и алюминием в поисках оптимальных режимов травления алюминия. Гринич лично работает с приборами, снимая характеристики транзисторов и интегральных микросхем. Когда нет прецедента и опытных данных кратчайших путь к практической реализации – "сделай сам". Путь, который и выбрала четверка пионеров – Гринич, Хорни, Мур, Нойс.

 

6.2 Развитие серийного производства интегральных микросхем.

6.2.1

Два директивных решения принятых в 1961–1962 гг. повлияли на развитие производства кремниевых транзисторов и ИС.

1) Решение фирмы IBM(Нью-Йорк) по разработке для перспективной ЭВМ не ферромагнитных запоминающих устройств, а электронных ЗУ(запоминающих устройств) на базе n-канальных полевых транзисторов(металл-окисел-полупроводник – МОП). Результатом успешного выполнения этого плана был выпуск в 1973 г. универсальной ЭВМ с МОП ЗУ – IBM- 370/158.

2) Директивные решения фирмы Fairchild предусматривающие расширение работ в полупроводниковой научно-исследовательской лаборатории по исследованию кремниевых приборов и материалов для них.

 

6.2.2

Мур, Нойс и Гринич из фирмы Fairchild привлекли в 1961 г. для вербовки молодых специалистов преподавателя Иллинойского университета – Са, который читал там курс физики полупроводников Бардина. Са завербовал специалистов, только что, закончивших асперантуру(см. Рис. 4.9). Это были Уэнлесс, Сноу – специалисты по физике твердого тела, Эндрю Гроув – химик, окончивший университет в Беркли, Дил – химик-практик.

Проект по физике приборов и материалам ввели Дил, Гроув и Сноу. Проект по схемным применениям ввел Уэнлесс. Результаты исследований этой четверки до сих пор используются в технологии СБИС.

В июле 1968 г. Гордон Мур и Роберт Нойс уходят из отделения полупроводников фирмы Fairchild и 28 июня 1968 года организуют крохотную фирму Intel из двенадцати человек, которые арендуют комнатку в Калифорнийском городе Маунтин Вью. Задача, которую поставили перед собой Мур, Нойс и примкнувший к ним специалист по химической технологии – Эндрю Гроув, использовать огромный потенциал интеграции большого числа электронных компонентов на одном полупроводниковом кристалле для создания новых видов электронных приборов.

В 1997 году Эндрю Гроув стал "человеком года", а возглавляемая им компания Intel, ставшая одной из ведущих в силиконовой долине в Калифорнии, стала производить микропроцессоры для 90% всех персональных компьютеров планеты. По состоянию на 1 января 1998 г. стоимость фирмы – 15 млрд.$, ежегодный доход – 5,1 млрд.$. Гроув исполняет обязанности председателя совета директоров. В 1999 г. ежемесячно фирма производит – 4 квадриллиона транзисторов т.е. более полумиллиона на каждого жителя планеты. Умельцы с Intel создают знаменитые чипы Pemtium I, II, III.

Андрю Гроув родился 2 сентября 1936 года в Венгрии, его тогда звали Андрош Гроф. Когда советские танки вошли в 1956 г. в Будапешт, Андрош бежал в Австрию и от туда в Нью-Йорк. Закончил с отличием Сити-колледж, защитил докторскую диссертацию в калифорнийском университете Беркли. Многие крупные корпорации хотели заполучить молодого ученого специалиста и инженера. Гроув достался, благодаря Са, фирме Fairchild.("Современные технологии автоматизации(СТА)" 1/99г. – статья о фирме Intel.)

 

6.2.3

История создания электронных запоминающих устройств берет начало с изобретения в 1967 г. Диннардом из IBM однотранзисторной динамической запоминающей ячейки для ЗУ с произвольной выборкой(ДЗУПВ). Это изобретение оказало сильное и длительное влияние на электронную промышленность текущего времени и отдаленного будущего. Его влияние по общему признанию сравнимо с изобретением самого транзистора. В ячейке объединены один ключ на МОППТ и один конденсатор. МОППТ служит переключателем для заряда(записи) и разряда(считывания). К 1988 г. выпуск таких ячеек занял первое место по количеству из всех искусственных объектов на нашей планете. Са прогнозировал на начало XXI века годовой выпуск этих ячеек 1020 шт.

 

На Рис. 6.1 показано поперечное сечение ячейки одного из первых серийных ДЗУПВ(Динамическое Запоминающее Устройство Произвольной Выборки) (емкость 256 кбит). Накопительный конденсатор имеет двухслойный диэлектрик из нитрида кремния на тонком слое термически выращенного оксида кремния. Диэлектрическая постоянная у нитрида ε = 7,5 больше, чем у оксида ε = 3,9, что обеспечивает получение большей емкости на единицу площади. Накопление большего заряда на меньшей площади и более высокую плотность информации. На Рис. 6.1:

1 – алюминиевая разрядная шина

2 – словарные шины из силицида тугоплавкого металла

3 – обкладка конденсатора из поликремния

4 – подзатворный диэлектрик из диоксида кремния

Записанная на эту ячейку информация теряется при отключении источника питания(энергозависимая ПЗУ). В 1971 году сотрудник фирмы Intel Фроман-Бенчковски предложил и запустил в серийное производство энергонезависимое стираемое программируемое постоянное запоминающее устройство. Снятие заряда на плавающих затворах этих ПЗУ производилось ультрафиолетовым светом. Позже инженеры фирмы Intel предложили быстродействующие электрические стираемые ПЗУ.

Появление интегральных микросхем сыграла решающую роль в развитие электроники положив начало новому этапу микроэлектроники. Микроэлектронику четвертого периода называют схематической, потому что в составе основных базовых элементов можно выделить элементы эквивалентные дискретным электро-радиоэлементам и каждой интегральной микросхеме соответствует определенная принципиальная электрическая схема, как и для электронных узлов аппаратуры предыдущих поколений.

6.2.4

Особое значение для массового производства микросхем представляет метод проектирования микросхем, разработанный Деннардом из фирмы IBM. В 1973 г. Деннард и его коллеги показали, что размеры транзистора можно уменьшать без ухудшения его ВАХ(вольт-амперных характеристик). Этот метод проектирования получил название закон масштабирования.

6.3 Этапы развития микроэлектроники

Интегральные микросхемы стали называться микроэлектронные устройства, рассматриваемые как единое изделие, имеющее высокую плотность расположения элементов эквивалентных элементам обычной схемы. Усложнение, выполняемых микросхемами функций, достигается повышением степени интеграции.

6.3.2

Развитие серийного производства интегральных микросхем шло ступенями:

1) 1960 – 1969гг. – интегральные схемы малой степени интеграции, 102 транзисторов на кристалле размером 0,25 x 0,5 мм (МИС).

2) 1969 – 1975гг. – интегральные схемы средней степени интеграций, 103 транзисторов на кристалле (СИС).

3) 1975 – 1980гг. – интегральные схемы с большой степенью интеграции, 104 транзисторов на кристалле (БИС).

4) 1980 – 1985гг. – интегральные микросхемы со сверхбольшой степенью интеграции, 105 транзисторов на кристалле (СБИС).

5) С 1985г. – интегральные микросхемы с ультрабольшой степенью интеграции, 107 и более транзисторов на кристалле (УБИС).

 

 

6.4 История создания микроэлектроники в СССР ("Вестник Дальневосточного отделения РАН", 1993г., 1 номер)

По данным опубликованным в вестнике основателем микроэлектроники в СССР был Старос Филипп Георгиевич. Он родился в 1918 г. в пригорода Нью-Йорка, в семье выходца из Греции Саранта. Закончил в 1941 г. колледж, получил диплом инженера-электрика, работал в оборонных исследовательских центрах, а вечерами учился, чтобы сдать экзамен на степень магистра технических наук. В студенческие годы он участвовал в антифашистском движении, вступил в компартию США, был дружен с Розенбергами. Когда Розенбергов арестовали, ФБР вызвал и Саранта. После первого же допроса в ФБР Сарант иммигрировал в СССР сменив имя и фамилию. Так у нас появился специалист – Старос Ф.Г., которого коммандировали в Чехославакию главным конструктором военно-технического института. Когда в 1955 г. Хрущев взял курс на научно-техническую революцию, Староса пригласили в СССР и предложили возглавить специальную лабораторию, созданную в Ленинграде под эгидой комитета авиационной техники. Уже в 1958 году Старос выступил на закрытом совещании ведущих работников электронной промышленности с докладом, содержавшим предложение по развитию новой элементной базы, а фактически с программой создания новой отрасли науки и техники – микроэлектроники. Эти идеи нашли поддержку в верхних эшелонах власти, и уже в 1959 г. Старос получил возможность создать свое конструкторско-технологическое бюро (АКТБ). В начале 60-х годов там, под руководством Староса, была разработана цифровая управляющая машина (УМ–1) с быстродействием 8 тыс. опер/сек. и продолжительностью безотказной работы 250 часов. В ней еще не использовались микросхемы(т.к. их надежнось в то время была очень низкой) и активными элементами служили германиевые транзисторы П15. Однако благодаря страничному монтажу получилась компактная дешевая машина. В 1960 году за создание этой машины Старос получил государственную премию. Ближайший помощник Староса – Иосив Виниаминович Берг(в прошлом Джоэль Берр). Берг после внезапной иммиграции Саранта поехал искать его в Европу и нашел в Москве, когда тот готовился к отъезду в Прагу. Берр сделался Бергом.

В 1962 году АКТБ посетил Хрущев. Ему показали машины УМ–1 и Электроника-200. Позднее американские специалисты отмечали, что Электроника-200 была первым компьютером советского производства, который можно считать хорошо разработанным и удивительно современным. Эта машина, на первых советских интегральных схемах, была способна выполнять 40 тыс. операций в секунду. Хрущев остался доволен.

В это время уже существовал госкомитет электронной промышленности работавший на оборону и возглавлял его Александр Шокин – человек прогрессивных взглядов. Он предложил Старосу создать научно-технический центр электронного профиля в Подмосковье (г. Зеленоград). Старос с жаром взялся за исполнение и в считанные недели подготовил детальный план организации комплекса из нескольких институтов и опытного завода. План получил одобрение в верхах и Старос был назначен научным руководителем будущего центра.

 




Поделиться с друзьями:


Дата добавления: 2015-05-26; Просмотров: 2967; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.132 сек.