Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение интегральных микросхем при конструировании АРЭО




 

Микроминиатюризация является основным направлением создания авиационного радиоэлектронного оборудования, обеспечивающим как высокую эксплуатационную надежность, так и малые габаритные и весовые показатели аппаратуры. При этом в качестве основного элемента схемы используется интегральная микросхема.

Микроэлектроника – это раздел электроники, включающий исследование, конструирование и производство интегральных микросхем и радиоэлектронной аппаратуры на их основе.

Интегральная микросхема (микросхема) – это микроэлектронное изделие, выполняющее определенную функцию преобразования, обработки сигнала и (или) накапливания информации и имеющее высокую плотность упаковки электрически соединенных элементов (или элементов и компонентов), которое с точки зрения требований к испытаниям, приемке, поставке и эксплуатации рассматривается как единое целое.

Элемент – это часть микросхемы, реализующая функцию какого-либо электрорадиоэлемента, которая не может быть выделена как самостоятельная изделие. Под электрорадиоэлементом понимают транзистор, диод, резистор, конденсатор и др. Элементы могут выполнять и более сложные функции, например логические (логические элементы) или запоминание информации (элементы памяти).

Компонент – это часть микросхемы, реализующая функцию какого-либо электрорадиоэлемента, которая может быть выделена как самостоятельное изделие. Компоненты устанавливаются на подложке микросхемы при выполнении сборочно-монтажных операций. К простым компонентам относятся бескорпусные диоды и транзисторы, специальные типы конденсаторов, малогабаритные катушки индуктивности и др. Сложные компоненты содержат несколько элементов, например диодные сборки.

Плотность упаковки – это отношение числа простых компонентов и элементов, в том числе содержащихся в составе сложных компонентов, к объему микросхемы без учета объема выводов.

С точки зрения внутреннего устройства микросхема представляет собой совокупность большого числа элементов и компонентов, размещенных на поверхности или в объеме общей диэлектрической или полупроводниковой подложки. Термин «интегральная» отражает конструктивное объединение элементов и компонентов, а также полное или частичное объединение технологических процессов их изготовления.

При использовании в радиоэлектронной аппаратуре сами микросхемы являются элементами, т.е. простейшими неделимыми единицами. В этом смысле они составляют базу радиоэлектронной аппаратуры.

Критерием оценки сложности микросхемы, т.е. числа N содержащихся в ней элементов и простых компонентов, является степень интеграции. Она определяется коэффициентом К = lg N, значение которого округляется до ближайшего большого целого числа. Так, микросхема первой степени интеграции (К = 1) содержит до 10 элементов и простых компонентов, второй степени интеграции (К = 2) – свыше 10 до 100, третьей степени интеграции (К = 3) – свыше 100 до 1000 и т. д. В настоящее время микросхему, содержащую 500 и более элементов, изготовленных по биполярной технологии, или 1000 и более элементов, изготовленных по МДП-технологии, называют большой интегральной микросхемой (БИС). Если число элементов превышает 10000, то микросхему называют сверхбольшой (СБИС).

По функциональному назначению микросхемы подразделяются на цифровые и аналоговые. Цифровая микросхема предназначена для преобразования и обработки сигналов, изменяющихся по закону дискретной функции. В аналоговых микросхемах сигналы изменяются по закону непрерывной функции. Самый распространенный тип аналоговых микросхем – это операционные усилители. Частным случаем аналоговых являются микросхемы диапазона СВЧ.

Конструктивно-технологическая классификация микросхем учитывает способ изготовления и получаемую при этом структуру. По конструктивно-технологическим признакам различают полупроводниковые и гибридные микросхемы.

В полупроводниковой микросхеме все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника. Структура содержащая элементы, межэлементные соединения и контактные площадки (металлизированные участки, служащие для присоединения внешних выводов), называется кристаллом интегральной микросхемы. В большинстве полупроводниковых микросхем элементы располагаются в тонком (толщиной 0,5….10мкм) приповерхностном слое полупроводника. Поскольку удельное сопротивление полупроводника невелико (1…10Ом. см), а элементы должны быть изолированными друг от друга, необходимы специальные изолирующие области.

На рис. 13, а, б, показаны соответственно структура и электрическая схема простейшей полупроводниковой микросхемы, состоящей из биполярного п-р-п транзистора и резистора. Структура содержит слаболегированную подложку l р- - типа, активный полупроводниковый слой n–типа, в котором кроме транзистора и полупроводникового резистора (слой р-типа) созданы изолирующие области 2 из диоксида кремния. На поверхности полупроводника сформирован диэлектрический слой диоксида кремния, на котором расположены металлические проводники.


 

 

Основным полупроводниковым материалом микросхем является кремний. Важное конструктивно-технологическое преимущество кремния связано со свойствами слоев диоксида кремния, получаемых на его поверхности при окислении. Эти слои используют в качестве масок при локальном легировании кремния примесями, для изоляции элементов в качестве подзатворного диэлектрика МДП-транзистора, а также для защиты поверхности кристалла от влияния окружающей среды и др. Достаточно большая ширина запрещенной зоны кремния обуславливает малые обратные токи р-п переходов, что позволяет создавать микросхемы, работающие при повышенных температурах (до 1250С) и при малых токах транзисторов (менее 1мкА), т.е. низкой потребляемой мощности.

В последнее десятилетие в ограниченных масштабах начато применение арсенида галлия, отличающегося большей подвижностью электронов. На его основе создают микросхемы с повышенным быстродействием или более высокими рабочими частотами (диапазон СВЧ). Однако арсенид галлия очень дорогой материал, а технология арсенид-галлиевых микросхем сложнее, чем кремниевых.

В некоторых микросхемах слой кремния, в котором формируются элементы, выращивают на диэлектрической подложке, в частности из сапфира (структура типа «кремний на сапфире»). Она обеспечивает повышенную радиационную стойкость.

Разновидностью полупроводниковых являются совмещенные микросхемы, в которых транзисторы размещают в активном слое кремния, а пленочные резисторы и диоды, как и проводники, - на слое диоксида кремния.

Важным показателем качества технологии и конструкции является плотность элементов на кристалле – число элементов, приходящихся на единицу его площади. Для повышения плотности элементов применяют метод совмещения: некоторые области полупроводникового слоя используют для выполнения нескольких (обычно двух) функций, например базы биполярного n-р-n транзистора и коллектора р-n-р транзистора, стоковой области одного МДП-транзистора и истоковой области другого. С этой же целью проводятся исследования и разработки трехмерных структур: элементы изготавливают в нескольких (обычно двух) слоях кремния, разделенных диэлектрическими прослойками, или создают канавки в кремневой подложке и формируют элементы на их боковых поверхностях.

Основные тенденции развития полупроводниковых микросхем – увеличение степени интеграции и быстродействия. Согласно эмпирическому закону число элементов N для наиболее сложных микросхем в среднем ежегодно удваивалось (прямая 1 на рис.14). отклонение от закона удвоения в последние годы (кривая 2) обусловлено приближением размеров элементов к их физическим пределам, сильным усложнением технологических процессов и оборудования. Рост числа элементов происходил в основном за счет уменьшения их топологических размеров, т.е. размеров в плоскости, параллельной поверхности кристалла (кривая3), и в меньшей степени – за счет разработки новых конструкций элементов и совершенствования схемотехники (кривая 4), а также увеличения размеров кристалла (кривая5).

 


 

Уровень технологии характеризуется минимальным топологическим размером ,т.е. наименьшими достижимыми размерами легированной области в полупроводниковом слое или пленочного слоя на поверхности, например минимальными шириной эмиттера биполярного транзистора, шириной проводников, расстояниями между ними.

Для полупроводниковых микросхем уменьшение по мере совершенствования технологии показано на рис.15, где заштрихованная область соответствует достигнутым на разных этапах развития микроэлектроники значениям . При = 0,3…0,5 мкм возникают проблемы, связанные с приближением размеров элементов, прежде всего транзисторов, к их физическим пределам. Уменьшение размеров элементов до указанных значений вызывает процессы деградации структуры кристалла вследствие повышения плотности тока, напряженности электрических полей и плотности выделяемой энергии. Особую проблему при использовании элементов малых размеров представляет формирование надежных внутрисхемных соединений. Их поперечное сечение уменьшается, а плотность тока растет. Это может приводить к разрушению проводников, расположенных на рельефной (не идеально плоской) поверхности, к коротким замыканиям проводников, сформированных в разных слоях друг над другом, вследствие пробоя или нарушения разделяющего их тонкого диэлектрического слоя.

Уменьшение топологических размеров элементов приводит к улучшению электрических параметров микросхем, в частности к повышению быстродействия из-за снижения паразитных емкостей р-n переходов, увеличению крутизны полевых транзисторов и др. Однако и здесь ограничивающим фактором являются внутрисхемные соединения, задержка сигнала, в которых не позволяет полностью использовать достигаемое высокое быстродействие элементов.

При разработке полупроводниковых микросхем конструкторы и технологи сталкиваются и с другими серьезными проблемами и ограничениями. Одна из самых трудных проблем – обеспечение конструктивно-технологической совместимости различных элементов, создаавемых внутри одного полупроводникового слоя. Он характеризуется строго определенными электрофизическими параметрами, оптимальными для одних элементов и малопригодными для других. Кроме того, для изготовления различных элементов, например биполярных и МДП- транзисторов, необходимы свои технологические операции, так что одновременное формирование этих элементов на одном кристалле затруднено. Поэтому для полупроводниковых микросхем характерен крайне ограниченный набор типов элементов в кристалле. Этим же объясняется их разделение по типу применяемых активных элементов (транзисторов) на два основных вида: микросхемы на биполярных транзисторах и микросхемы на МДП-транзисторах (МДП- микросхемы).

Основным активным элементом биполярных микросхем является транзистор типа n-p-n. Кроме того, используются диоды на основе p-n переходов и переходов металл – полупроводник (диоды Шотки), полупроводниковые резисторы, пленочные резисторы (в совмещенных микросхемах), изготавливаемые, например, в поликристаллическом слое кремния, и в редких случаях – конденсаторы небольшой емкости. Транзисторы типа p-n-p применяют значительно реже, чем n-p-n. Параметры полупроводниковых слоев и последовательность технологических операций при изготовлении биполярных микросхем выбираются, прежде всего, с учетом обеспечения наилучших электрических параметров биполярных транзисторов типа n-p-n, Другие элементы формируются в аналогичных слоях одновременно с транзисторами. Использование пассивных элементов (резисторов, конденсаторов) ограничено, так как по сравнению с транзисторами они занимают большую площадь на кристалле.

Основными элементами современных МДП - микросхем являются МДП-транзисторы с каналом n – типа. Площадь этих транзисторов на кристалле значительно меньше, чем биполярных, поэтому для микросхем на n – канальных МДП-транзисторах достигается самая высокая степень интеграции, но они уступают биполярным по быстродействию. В комплементарных МДП - микросхемах применяют МДП-транзисторы с индуцированными каналами n - и p – типа, для этих микросхем характерна очень малая потребляемая мощность.

В специальных случаях в полупроводниковых микросхемах используют биполярные транзисторы в сочетании с МДП – либо полевыми транзисторами с управляющим p-n переходом. Для изготовления таких микросхем требуется более сложная технология.

В арсенид-галлиевых полупроводниковых микросхемах активными элементами служат полевые транзисторы с управляющим переходом металл-полупроводник (МЕП – транзистор), кроме того, используют диоды Шотки и полупроводниковые резисторы.

Характеристики и параметры дискретных биполярных, МДП - и МЕП – транзисторов рассмотрены в [6]. Для транзисторов полупроводниковых микросхем они в основном такие же. Специфика обусловлена конструкцией транзисторов, меньшими размерами, наличием изолирующих областей, малыми рабочими токами и напряжениями.

Полупроводниковые микросхемы в большинстве случаев являются изделиями широкого применения: одни и те же микросхемы используются в микроэлектронной аппаратуре различного назначения. Они выпускаются большими партиями; только при этом условии окупаются высокие затраты на разработку новых типов микросхем.

Гибридная интегральная микросхема содержит пленочные пассивные элементы и навесные компоненты. На рис. 16а, представлена структура простейшей гибридной микросхемы.


 

На диэлектрическую подложку 1 нанесены пленочные резисторы 2 и пленочный конденсатор 3. С помощью клея (слой5) на подложку установлен бескорпусный биполярный n-p-n транзистор 4 с проволочными выводами, соединенными с металлическими слоями. Соответствующая электрическая схема приведена на рис. 16,б.

В гибридных микросхемах используются как простые, так и сложные компоненты, например бескорпусные кристаллы полупроводниковых микросхем. Электрические связи между элементами, компонентами и кристаллами осуществляют с помощью пленочных и проволочных проводников. Подложка с расположенными на ее поверхности пленочными элементами, проводниками и контактными площадками называется платой.

Многокристальная гибридная микросхема представляет собой совокупность нескольких бескорпусных полупроводниковых микросхем, установленных на одной диэлектрической подложке, соединенных между собой проводниками и заключенных в герметизированный корпус.

В зависимости от способа нанесения пленок на поверхность диэлектрической подложки и их толщины различают тонкопленочные (толщина пленок менее 1мкм) и толстопленочные (толщина пленок более 1мкм) гибридные микросхемы. Помимо количественных существуют и качественные различия, определяемые технологией изготовления пленок. Тонкопленочные элементы формируют, как правило, с помощью термического вакуумного испарения и ионного распыления, а толстопленочные элементы наносят на подложку методом трафаретной печати с последующим вжиганием.

Широкое использование гибридных микросхем обусловлено сравнительно невысокими первоначальными затратами при организации производства, возможностью применения разнообразных компонентов с требуемыми рабочими характеристиками и простотой изготовления плат (особенно с толстопленочными элементами). Однако гибридные микросхемы отличаются от полупроводниковых большими размерами и более сложной технологией сборки. (См. табл. на стр. 66).

 




Поделиться с друзьями:


Дата добавления: 2015-05-29; Просмотров: 2270; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.