КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Типовой расчет по дисциплине 1 страница
«ЛИНЕЙНАЯ АЛГЕБРА» (Часть 1. Линейные и евклидовы пространства)
Направление 080100 «Экономика»
Очная форма обучения
Рязань 2012 Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . , Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса
Вариант 2 Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса Вариант 6 Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса
Вариант 7 Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса
Вариант 9 Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе . Задание 4 (процесс ортогонализации Грама-Шмидта системы векторов). В пространстве вектор-столбцов задан базис . Требуется провести процесс ортогонализации Грама-Шмидта системы векторов базиса , если в скалярное произведение задано в стандартном виде Задание 5 (дополнение системы векторов до ортогонального базиса). Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса Вариант 10 Задание 1 (линейная зависимость систем векторов). Исследовать на линейную зависимость систему векторов. В случае линейной зависимости выразить какой-нибудь вектор через остальные векторы системы Задание 2 (базис и размерность линейного пространства решений ОСЛАУ). Найти базис и размерность линейного пространства решений однородной системы линейных алгебраических уравнений Задание 3 (формулы преобразования координат при переходе от базиса к базису). Дана система векторов . 1. Доказать, что она является базисом в пространстве , написать матрицу перехода от стандартного базиса пространства к базису . 2. Написать формулы преобразования координат при преобразовании базиса. Пользуясь полученными формулами, найти координаты вектора в базисе .
Дата добавления: 2015-05-29; Просмотров: 332; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |