КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Производные и дифференциалы высших порядков. Правило Лопиталя
Практическая работа № 16 Пусть функция f(x)- дифференцируема на некотором интервале. Тогда, дифференцируя ее, получаем первую производную Если найти производную функции f¢(x), получим вторую производную функции f(x). т.е. y¢¢ = (y¢)¢ или .
Этот процесс можно продолжить и далее, находя производные степени n. .
Пример 1. Найти производную второго порядка функции Решение.
Пример 2. Найти третью производную от функции в точке Решение.
Пример 3. Вычислить значения первой и второй производных функции в точке Решение.
Пример 4. Найти если Решение.
Пример 5. Найти производную порядка функции Решение.
…………………………
Пример 6. Записать формулу для производной порядка, если Решение.
…………………………
Пример 7: Точка движется прямолинейно по закону . Вычислить скорость и ускорение в момент времени . Решение: Скорость: . (ед. скорости). Ускорение: . . Т.е ускорение постоянно в любой момент времени, следовательно, ед. ускорения.
Пример 8. Найти дифференциал второго порядка функции Решение.
Дифференциал сложной функции. Инвариантная форма записи дифференциала. Пусть y = f(x), x = g(t), т.е у- сложная функция. Тогда dy = f¢(x)g¢(t)dt = f¢(x)dx.
Видно, что форма записи дифференциала dy не зависит от того, будет ли х независимой переменной или функцией какой- то другой переменной, в связи с чем эта форма записи называется инвариантной формой записи дифференциала.
Однако, если х- независимая переменная, то dx = Dx, но если х зависит от t, то Dх ¹ dx. Таким образом форма записи dy = f¢(x)Dx не является инвариантной.
Пример. Найти производную функции .
Сначала преобразуем данную функцию:
Пример. Найти производную функции .
Пример. Найти производную функции
Пример. Найти производную функции
Пример. Найти производную функции
Применение дифференциала к приближенным вычислениям. Дифференциал функции y = f(x) зависит от Dх и является главной частью приращения Dх. Также можно воспользоваться формулой
Тогда абсолютная погрешность Относительная погрешность Приближенные вычисления с помощью полного дифференциала.
Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции: Если подставить в эту формулу выражение то получим приближенную формулу:
Пример. Вычислить приближенно значение , исходя из значения функции при x = 1, y = 2, z = 1.
Из заданного выражения определим Dx = 1,04 – 1 = 0,04, Dy = 1,99 – 2 = -0,01, Dz = 1,02 – 1 = 0,02. Найдем значение функции u(x, y, z) = Находим частные производные: Полный дифференциал функции u равен:
Точное значение этого выражения: 1,049275225687319176.
Теорема (правило Лопиталя). Если функции f(x) и g(x) дифференцируемы в вблизи точки а, непрерывны в точке а, g¢(x) отлична от нуля вблизи а и f(a) = g(a) = 0, то предел отношения функций при х®а равен пределу отношения их производных, если этот предел (конечный или бесконечный) существует. Пример 1. Найти . . Пример 2. Найти . … Пример 3. Найти . . Пример 4: Найти предел . Здесь Тогда . Следовательно Пример5: Найти предел . Решение.
Пример 6. Найти .
Пример 7: Найти предел .
Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя. f¢(x) = 2x + ; g¢(x) = ex;
;
Пример 8: Найти предел . ; ; .
Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя. Пример 9: Найти предел .
; ; ; ; ; ;
Следует отметить, что правило Лопиталя – всего лишь один из способов вычисления пределов. Часто в конкретном примере наряду с правилом Лопиталя может быть использован и какой – либо другой метод (замена переменных, домножение и др.).
Пример 10: Найти предел .
; ; - опять получилась неопределенность. Применим правило Лопиталя еще раз.
; ; - применяем правило Лопиталя еще раз.
; ; ;
Неопределенности вида можно раскрыть с помощью логарифмирования. Такие неопределенности встречаются при нахождении пределов функций вида , f(x)>0 вблизи точки а при х®а. Для нахождения предела такой функции достаточно найти предел функции lny = g(x)lnf(x).
Пример 11: Найти предел .
; - получили неопределенность. Применяем правило Лопиталя еще раз. ; ; Задания
1) 2) 3) ; ; 4 5) ; 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) ; 22)
Дата добавления: 2015-05-31; Просмотров: 1059; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |