КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Признак Коши. (радикальный признак)
Признак Даламбера. (Жан Лерон Даламбер (1717 – 1783) – французский математик)
Если для ряда с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство
то ряд сходится, если же для всех достаточно больших n выполняется условие
то ряд расходится. Предельный признак Даламбера.
Предельный признак Даламбера является следствием из приведенного выше признака Даламбера. Если существует предел , то при r < 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.
Пример. Определить сходимость ряда . Вывод: ряд сходится.
Пример. Определить сходимость ряда Вывод: ряд сходится.
Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство , то ряд сходится, если же для всех достаточно больших n выполняется неравенство
то ряд расходится.
Следствие. Если существует предел , то при r<1 ряд сходится, а при r>1 ряд расходится.
Пример. Определить сходимость ряда . Вывод: ряд сходится. Пример. Определить сходимость ряда . Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю. , таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.
Дата добавления: 2015-06-25; Просмотров: 328; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |