Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теоретические основы работы




Отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме, обозначаемое буквой К, часто используется в различных термодинамических расчетах. Показатель К называют показателе адиабаты.

Значение К можно выразить через отношения массовых, объемных или мольных теплоемкостей:

(1)

В молекулярно-кинетической теории газов для определения показателя адиабаты приводится следующая формула:

(2)

где п – число степеней свободы движения молекулы газа.

Для одноатомного газа п = 3, К = 1,667, для двухатомных газов п = 5, К = 1,4 и для трехатомных газов п = 6, К = 1,33.

Теплоемкости Ср и зависят от температуры, следовательно, и показатель адиабаты “ К” должен зависеть от температуры. Установим эту зависимость следующим образцом:

Используя уравнение Майера,

. (3)

Запишем выражение, (1) в виде

. (4)

Для 1 моля газа получается

. (5)

Обычно зависимость показателя адиабаты от температуры выражается формулой вида:

, (6)

где К0 – значение показателя “ К ”при 00С;

- коэффициент.

Для двухатомных газов при температурах до 20000С эмпирически получена следующая зависимость:

(7)

Изменение состояния термодинамической системы, происходящее без теплообмена с окружающей средой () называется адиабатным процессом. Обратимый адиабатный процесс ( и ) называется изоэнтропным процессом, т.е. процессом, в котором , - диссилативные потери.

Из первого начала термодинамики следует, что для 1 кг закрытой термохимической гомогенной (однородной) системы, совершающей обратимый процесс, внешняя теплота.

. (8)

или используя известные выражения:

; ;

получим выражение:

(9),

Но так как для атмосферного воздуха допустимы равенства

, ; ,

совершенно точные лишь для идеального газа, то

(10)

Так как в обратимых адиабатных термодинамических процессах

и , то:

(11)

где - введенный ранее показатель адиабаты.

Разделив переменные и исключив P и V, при помощи равенства , являющегося дифференциальной формой уравнения Клайперона, получим три уравнения адиабаты:

; (12)

В интегральной форме при () они принимают вид:

; ;

Следовательно, показатель адиабатного процесса может быть выражен также и равенствами

; (13)

В идеальном изотермическом процессе ,

и или (14)

Поэтому, если через определенную точку с параметрами в и - осях (рис.1) процессы и , то в состоянии I отношении или , входящее в уравнение (13) и (14), будет одно и то же.

Тогда величина:

(15)


Таким образом, для определения истинного показателя адиабаты необходимы аналитически или экспериментально установленные значения калорических (, ) или же термических параметров (P, V, T), а также их частных дифференциалов и производных.

 

Рис.1

Но если в уравнение (15) подставить малые конечные приращения, то при средний показатель адиабаты

а при Р = Рб, т.е. равном барометрическому давлению.

(16)

При уменьшении избыточного давления Ри1 средний показатель адиабаты будет приближаться к истинному К, присущему атмосферному воздуху.

Определив средний показатель адиабаты и используя равенство:

(17)

можно вычислить, и , а затем известных и найти , , и , т.е. определить средние изохорные и изобарные весовые, мольные и объемные теплоемкости воздуха.




Поделиться с друзьями:


Дата добавления: 2015-06-25; Просмотров: 281; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.