Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Холодильники и нагреватели




Термоэлементы

Термоэлементы – приборы, в которых тепловая энергия непосредственно превращается в электрическую.

Основаны они на явлении Зеебека1, заключающемся в том, что при нагреве места спая двух разнородных металлов в замкнутой цепи возникает электродвижущая сила. Явление Зеебека используется давно для измерения температур с помощью термопар. Для получения электрической энергии из тепловой металлические проводники не пригодны, так как коэффициент полезного действия (к.п.д.) термоэлементов из проволоки составляет всего 0,5%. Для этой цели используют полупроводники, которые дают возможность непосредственно превращать тепловую энергию в электрическую без участия каких-либо машин.

Коэффициент полезного действия термоэлемента, составленного из полупроводников, доходит до 7-10%, т.е. находится на уровне к.п.д. таких машин, как паровозы, в которых он равен 4-8%.

Термоэлементы составляют из полупроводников с р- и n-проводимостью, соединённых друг с другом металлической пластинкой. Конструктивное выполнение такого термоэлемента сходно с термоэлементом из металлических проволок. Примером хорошей пары являются цинк – сурьма и сернистый свинец. При подогреве места «спая» полупроводниковых пластинок в замкнутой цепи возникает электродвижущая сила. Соединение таких отдельных термоэлементов в батарею даёт возможность получать постоянный ток необходимого напряжения в 120 и более в; мощность большинства термогенераторов ограничена несколькими десятками ватт. Недавно создан термогенератор мощностью в 200 вт, проектируются ещё более мощные.

Батареи из термоэлементов с радиальным расположением отдельных элементов, спаи которых сходятся в центре круга, служат для получения электроэнергии, питающей радиоустановки, в местах отсутствия электрической энергии. Спаи в этом случае подогревают керосиновой лампой или керогазом.

Важной особенностью, открывающей широкие перспективы применения полупроводников, является получение с их помощью холода и тепла более экономичными путями.

Такое использование полупроводников основано на термоэлектрических явлениях, обратных наблюдающимся в термоэлементах. Ток, возникающий в замкнутой цепи термоэлемента, охлаждает горячий спай и наоборот, подогревает холодный спай. При пропускании же тока через термоэлементы в обратном направлении выделяется тепло в горячем спае и отнимается тепло от холодного. Один и тот же спай двух проводников при одном направлении тока нагревается, а при другом охлаждается. Пользуясь этим, можно охлаждать воздух в холодильном шкафу, в который помещён охлаждаемый спай металла. Для этого в термоэлементе поддерживают температуру нагреваемого спая, близкую к комнатной, отводя от него выделяемую теплоту в окружающую среду; при этом другой спай значительно охлаждается, а через него охлаждается и окружающий воздух.

Применяя для этой цели полупроводники, характеризующие достаточно высокой величиной к.п.д. термоэлемента, можно получить в холодильном шкафу необходимые низкие температуры. Например, полупроводники из сплавов висмута, селена, теллура и сурьмы обеспечивают в термоэлементе разность температур около 60°C, а в сконструированном с помощью таких полупроводников холодильном шкафу поддерживается температура минус 16°C.

Этим же явлением можно воспользоваться и для отопления зданий. Пропуская электрический ток через термоэлектрическую цепь, помимо обычного нагрева всего проводника, охлаждают один спай и нагревают другой, т.е. переносят тепло от одного спая к другому. Академик А.Ф.Иоффе рассчитал, какое количество тепла будет при этом выделено. От охлаждаемого спая отнимается некоторое количество тепловой энергии

Q0=αT0It,

где α – термоэлектродвижущая сила, в;

T0 – абсолютная температура холодного спая;

I – величина тока, а;

t – длительность прохождения тока, сек.

Соответственно в тёплом спае, абсолютную температуру которого обозначим через Т1, выделяется тепловая энергия Q1:

Q1=αT1It.

Эта тепловая энергия Q1 больше теплоты Q0, в отношении:

Q1/ Q0= Т1/ T0.

Если ограничиться рассмотрением процесса на обоих спаях, то их можно описать следующим образом: электрический ток отнимает от холодного спая теплоту Q0 и передаёт теплому спаю большее количество тепла Q1, добавляя недостающую энергию в виде электрической энергии W. К теплоте Q0, отнимаемой от холодного спая, добавляется энергия W, и сумма их Q0+W= Q1 выделяется на тёплом спае.

Из приведенных данных о величинах Q0 и Q1 видно, что отношение затрачиваемой электрической энергии W к теплоте Q1, которая освобождается на теплом спае, равно:

W/Q1=Q1­Q0/Q1=T1­T0/T.

Если абсолютная температура теплого спая Т1=300°, что соответствует +27°C, а температура Т0=270° или -3°C, то

W/Q1=30/300=0,1,

Отсюда следует, что для передачи в тёплое помещение при температуре 2727°C100 кал тепла можно было бы использовать 90 кал, взятых от холодной среды (например, от внешнего воздуха) и добавить всего 10 кал за счёт электроэнергии.

Поскольку такое извлечение тепла из внешнего холодного воздуха или водного резервуара легко и доступно, возникает заманчивая возможность, затрачивая всего 10% от вносимого в помещение тепла за счёт электроэнергии, отапливать помещение практически за счёт извлекаемого снаружи тепла. Но процесс в термоэлектрической батарее не ограничивается только выделением и поглощением тепла на спаях. Вдоль ветвей самой термобатареи возникает поток тепла от теплого спая к холодному, который противодействует переносу тепла в обратном направлении, сопровождающему прохождение тока. Кроме того, часть электрической энергии превращается в тепло в обеих ветвях термоэлемента. В результате наличия этих двух процессов использование электроэнергии резко снижается; приходится добавлять не 10% электроэнергии, а около 60%; но и такой результат представляет значительный интерес: затрата электроэнергии составляет только около половины теплоты, поступающей в помещение, а остальная половина доставляется более холодным наружным воздухом или проточной водой при температурах, близких к нулю.

Чем меньше разность Т1-Т0 по сравнению с Т1, тем выгоднее окажется термоэлектрическая батарея по сравнению с электрической печью сопротивления.

Термоэлектрическая батарея обладает и другим важным преимуществом. Если изменить направление тока на противоположное, то на наружных спаях начнёт выделяться теплота Q0, а нагревавшие помещение спаи будут отнимать теплоту Q1, охлаждая помещение. В жаркое время года та же термобатарея может охлаждать воздух. Регулируя величину и направление тока в батарее, можно поддерживать в помещении одинаковую температуру при любых температурах внешнего воздуха.

Источники:

http://baza-referat.ru/Применение_полупроводников_в_технике

http://kaf-fiz-1586.narod.ru/10bf/uchebnik/44.htm

http://hightolow.ru/semiconductors1.php

http://otvet.mail.ru/question/39509026

https://ru.wikipedia.org/wiki/Полупроводник




Поделиться с друзьями:


Дата добавления: 2015-06-26; Просмотров: 388; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.