КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Два полных моста параллельно
Позволяет применять диоды со средним током почти вдвое меньшим, чем в однофазном полномостовом.
Двухфазные выпрямители со сдвигом фаз 90° - Два четвертьмоста параллельно - Два полумоста параллельно - Два полумоста последовательно - Два полных моста параллельно На двух параллельных полных мостах. Площадь под интегральной кривой равна: Средняя ЭДС равна: то есть в раз больше, чем в однофазном полномостовом. В режиме холостого хода и близких к нему ЭДС в мосту с наибольшей на данном отрезке периода ЭДС обратно смещает (закрывает) диоды моста с меньшей на данном отрезке периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно. При увеличении нагрузки (уменьшении) появляются и увеличиваются отрезки периода, на которых оба моста работают параллельно на общую нагрузку, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно. В режиме короткого замыкания оба моста работают параллельно на нагрузку на всём периоде, но полезная мощность в этом режиме равна нулю.
- Два полных моста последовательно На двух последовательных полных мостах. Площадь под интегральной кривой равна: Средняя ЭДС равна: то есть вдвое больше, чем в однофазном полномостовом.
Трёхфазные выпрямители - Три четвертьмоста параллельно (схема Маткевича) Наиболее распространены трёхфазные выпрямители по схеме Миткевича В. Ф. (на трёх диодах, предложена им в 1901 г.) и по схеме Ларионова А. Н. (на шести диодах, предложена в 1923 г.). Выпрямитель по схеме Миткевича является четвертьмостовым параллельным, по схеме Ларионова — полумостовым параллельным.
Рисунок 7 - Три четвертьмоста параллельно (Миткевича В. Ф.) Рисунок 8 - Вид ЭДС на входе (точками) и на выходе (сплошной)
Площадь под интегральной кривой равна: ЭДС равна: На холостом ходу и близких к нему режимах ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды в ветвях с меньшей на данном отрезке периода ЭДС и относительное эквивалентное активное сопротивление равно сопротивлению одной ветви При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода, на которых обе ветви работают на одну нагрузку параллельно и относительное эквивалентное активное сопротивление на этих отрезках равно В режиме короткого замыкания эти отрезки максимальны, но полезная мощность в этом режиме равна нулю. Частота пульсаций равна , где — частота сети.
- Три разделённых полумоста параллельно (три «с удвоением напряжения» параллельно) - Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов») Рисунок 9 - Три полумоста параллельно, объединённые кольцом/треугольником
Рисунок 10 - Вид ЭДС на входе (точками) и на выходе (сплошной)
В некоторой электротехнической литературе иногда не различают схемы «треугольник-Ларионов» и «звезда-Ларионов», которые имеют разные значения среднего выпрямленного напряжения, максимального тока, эквивалентного активного внутреннего сопротивления и др. В выпрямителе "треугольник-Ларионов" потери в меди больше, чем в выпрямителе «звезда-Ларионов», поэтому на практике чаще применяется схема «звезда-Ларионов». Кроме этого, выпрямители Ларионова А.Н. часто называют мостовыми, на самом деле они являются полумостовыми параллельными. В некоторой литературе выпрямители Ларионова и подобные называют «полноволновыми» на самом деле полноволновыми являются выпрямитель «три последовательных моста» и подобные.
Средняя ЭДС равна: , то есть больше, чем в выпрямителе Миткевича. В работе схемы «треугольник-Ларионов» есть два периода. Большой период равен 360° (). Малый период равен 60° (π / 3), и повторяется внутри большого 6 раз. Малый период состоит из двух малых полупериодов по 30° (π / 6), которые зеркально симметричны и поэтому достаточно разобрать работу схемы на одном малом полупериоде в 30°. На холостом ходу и в режимах близких к нему ЭДС в ветви с наибольшей на данном отрезке периода обратносмещает (закрывает) диоды с меньшими на данном отрезке периода ЭДС. В начальный момент () ЭДС в одной из ветвей равна нулю, а ЭДС в двух других ветвях равны 0,86*Em, при этом открыты два верхних диода и один нижний диод. Эквивалентная схема представляет собой две параллельные ветви с одинаковыми ЭДС (0,86) и одинаковыми сопротивлениями по 3*r каждое, эквивалентное сопротивление обеих ветвей равно 3*r/2. Далее, на малом полупериоде, одна из двух ЭДС, равных 0,86, растёт до 1,0, другая уменьшается до 0,5, а третья растёт от 0,0 до 0,5. Один из двух открытых верхних диодов закрывается, и эквивалентная схема является параллельным включением двух ветвей, в одной из которых большая ЭДС и её сопротивление равно 3*r, в другой ветви образуется последовательное включение двух меньших ЭДС, и её сопротивление равно 2*3*r=6*r, эквивалентное сопротивление обеих ветвей равно Частота пульсаций равна , где — частота сети. Абсолютная амплитуда пульсаций равна .
- Три полумоста параллельно, объединённые звездой («звезда-Ларионов») Рисунок 11 - Три полумоста параллельно, объединённые звездой Рисунок 12 - Вид ЭДС схемы "Звезда-Ларионов"
Выпрямитель звезда-Ларионов (шестипульсный) применяется в генераторах электроснабжения бортовой сети почти на всех средствах транспорта (автотракторных, водных, подводных, воздушных и др.). В электроприводе тепловозов и дизель-электроходов почти вся мощность проходит через выпрямитель звезда-Ларионов. Площадь под интегральной кривой равна: . Средняя ЭДС равна: , то есть в раз больше, чем в схемах «треугольник-Ларионов» и «три параллельных полных моста» и вдвое больше, чем в схеме Миткевича. В этом выпрямителе есть большой период равный 360° и малый период, равный 60°. В большом периоде помещаются 6 малых периодов. Малый период в 60° состоит из двух зеркально симметричных частей по 30°, поэтому для описания работы этой схемы достаточно разобрать её работу на одной части в 30° малого периода. В начале малого периода () ЭДС в одной из ветвей равна нулю, в двух других — по 0,86*Em. Эти две ветви включены последовательно. Эквивалентное внутреннее активное сопротивление при этом равно Далее, одна из ЭДС. увеличивается от 0,86 до 1,0, другая уменьшается от 0,86 до 0,5, а третья растёт от 0,0 до 0,5. Эквивалентная схема при этом представляет собой две последовательно включенные ветви, в одной из которых одна ЭДС и её сопротивление равно сопротивлению одной обмотки 3*r, в другой две параллельно включенные ЭДС с сопротивлением 3*r каждая, эквивалентное сопротивление двух параллельных ветвей равно 3*r/2. Эквивалентное активное внутреннее сопротивление всей цепи равно . В режимах близких к холостому ходу (при малых нагрузках) в параллельных ветвях э.д.с. в ветви с большей э.д.с. обратносмещает (закрывает) диод в ветви с меньшей э.д.с., при этом изменяется эквивалентная схема. При увеличении нагрузки появляются и увеличиваются отрезки периода на которых обе ветви работают на нагрузку параллельно. В режиме короткого замыкания отрезки параллельной работы увеличиваются до длины всего периода, но полезная мощность в этом режиме равна нулю. Частота пульсаций равна , где — частота сети. Абсолютная амплитуда пульсаций равна . Относительная амплитуда пульсаций равна .
- Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов) Рисунок 13 - Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)
Является почти аналогом выпрямителя «три полных моста параллельно» и имеет почти такие же свойства, как и выпрямитель «три полных моста параллельно», но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больший. Площадь под интегральной кривой равна: . Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов». - Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов) Является почти аналогом выпрямителя «три полных моста последовательно» и имеет почти такие же свойства, но эквивалентное внутреннее активное сопротивление почти вдвое больше, число диодов вдвое меньше, средний ток через один диод почти вдвое больше.
- Три полных моста параллельно (12 диодов) Рисунок 14 - Три полных моста параллельно (тип 1) Рисунок 15 - Три полных моста параллельно (тип 2)
Менее известны полномостовые трёхфазные выпрямители по схеме «три параллельных моста» (на двенадцати диодах), «три последовательных моста» (на двенадцати диодах), и др., которые по многим параметрам превосходят выпрямитель Ларионова А.Н. По схемам выпрямителей можно видеть, что выпрямитель Миткевича В. Ф. является «недостроенным» выпрямителем Ларионова А.Н., а выпрямитель Ларионова А.Н. является «недостроенным» выпрямителем «три параллельных моста». Рисунок 16 - Вид ЭДС на входе (точками) и на выходе (сплошной)
Площадь под интегральной кривой равна: . Средняя ЭДС равна: , то есть такая же, как и в схеме «треугольник-Ларионов» и в раз меньше, чем в схеме «звезда-Ларионов». В режиме холостого хода ЭДС в мосту с наибольшей на данном отрезке большого периода ЭДС обратносмещает (закрывает) диоды в мостах с меньшими на данном отрезке большого периода ЭДС. Эквивалентное внутреннее активное сопротивление при этом равно сопротивлению одного моста При увеличении нагрузки (уменьшении ) появляются и увеличиваются отрезки периода на которых два моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода при этом равно сопротивлению двух параллельных мостов При дальнейшем увеличении нагрузки появляются и увеличиваются отрезки периода на которых все три моста работают на нагрузку параллельно, эквивалентное внутреннее активное сопротивление на этих отрезках периода равно сопротивлению трёх параллельных мостов В режиме короткого замыкания все три параллельных моста работают на нагрузку, но полезная мощность в этом режиме равна нулю. Выпрямитель «три параллельных полных моста» на холостом ходу имеет такую же среднюю ЭДС, как в выпрямителе «треугольник-Ларионов» и такие же сопротивления обмоток, но, так как у него схема с независимыми от соседних фаз диодами, то моменты переключения диодов отличаются от моментов переключения диодов в схеме «треугольник-Ларионов». Нагрузочные характеристики этих двух выпрямителей получаются разными. Частота пульсаций равна , где — частота сети. Абсолютная амплитуда пульсаций равна . Относительная амплитуда пульсаций равна .
- Три полных моста последовательно (12 диодов) Рисунок 17 - Три полных моста последовательно (12 диодов)
Площадь под интегральной кривой равна:
Средняя ЭДС равна: , то есть вдвое больше, чем в схеме «треугольник-Ларионов». Эквивалентное внутреннее активное сопротивление равно сопротивлению трёх последовательно включенных мостов с сопротивлением 3*r каждый, то есть . Частота пульсаций равна , где — частота сети. Этот выпрямитель имеет наибольшую среднюю ЭДС и может найти применение в высоковольтных источниках напряжения (в установках электростатической очистки промышленных и др.).
N-фазные выпрямители Как и трёхфазные, многофазные выпрямители могут быть полномостовыми, полумостовыми и четвертьмостовыми, параллельными раздельными, параллельными объединёнными звёздами, параллельными объединёнными кольцами, последовательными, параллельно-последовательными.
Двенадцатипульсовый статический выпрямитель Представляет собой параллельное (или иногда последовательное) включение двух выпрямителей Ларионова со сдвигом фаз входных трёхфазных токов. При этом вдвое увеличивается число выпрямленных полупериодов по сравнению с обычным выпрямителем Ларионова из-за чего уменьшается относительная амплитуда пульсаций выпрямленного напряжения и вдвое увеличивается частота пульсаций выпрямленного напряжения, что также облегчает сглаживание выпрямленного напряжения.
Выпрямители с умножением напряжения Выпрямители с умножением напряжения применяются в тех случаях, когда по каким-то причинам входное переменное напряжение должно быть ниже, чем выходное постоянное. К примеру, в отечественных телевизорах, начиная с некоторых моделей от последних серий УЛПЦТИ и вплоть до 4УСЦТ применялся умножитель высокого напряжения в цепи анода кинескопа.
- Выпрямитель Вилларда Состоит из конденсатора, включенного последовательно с обмоткой, и диода, включенного параллельно нагрузке. Во время отрицательного полупериода ток течёт по цепи: «источник переменного тока — конденсатор — диод», конденсатор заряжается. Во время положительного полупериода заряженный конденсатор включается последовательно с трансформатором, напряжения на них складываются. Особенность данного выпрямителя в том, что в качестве сглаживающего фильтра обязательно должен использоваться дроссель, так как конденсатор во время отрицательного полупериода будет разряжаться.
- Выпрямитель Грейнахера Этот выпрямитель содержит 2 диода. Принцип действия тот же, что и у выпрямителя Вилларда, но в качестве сглаживающего фильтра можно использовать конденсатор. Такая схема часто используется в качестве амплитудного детектора в радиоприёмниках.
- Мостовой удвоитель напряжения Мостовой удвоитель напряжения напоминает мост Гретца, но в отличие от него в одном из плеч моста вместо диодов установлены конденсаторы. За счёт этого во время каждой полуволны во входную цепь подключается то один, то другой конденсатор, а напряжение на выходе выпрямителя складывается из напряжений на двух конденсаторах.
Преобразователи переменного тока в постоянный с изменения параметров
Преобразователем переменного тока в постоянный с изменением параметров являются тиристорные выпрямители. Тиристорные выпрямители охватывают средний и верхний диапазоны мощностей. Именно при высоких выходных напряжениях и больших токах тиристор -- наиболее удачный полупроводник в электротехнике. Управление осуществляется комбинированным транзисторно-тиристорным силовым элементом. Как правило, в выпрямителях применяются мостовые коммутируемые схемы выпрямления. Тиристорные выпрямители применяются как для непосредственного питания потребителей, так и, одновременно, для подзаряда аккумуляторных батарей в устройствах бесперебойного электропитания.
Типовые схемы
Мощный управляемый выпрямитель на тиристорах На первых двух рисунках изображены варианты выпрямителей на тиристорах, которые обеспечивают максимальный ток в нагрузке до 6 А с пределом регулировки напряжения от 0 до 15 в (Рисунок 18) и от 0,5 до 15 в (Рисунок 19). В течение одного полупериода к аноду тиристора приложено положительное относительно катода напряжение. Рисунок 18 - Принципиальная схема выпрямителя №1
Пока на управляющий электрод не подан положительный сигнал определенной амплитуды со схемы запуска, тиристор не пропускает ток в прямом направлении. Через некоторый произвольный угол задержки α между напряжениями на управляющем электроде и катоде прикладывается положительный запускающий сигнал, вызывающий протекание тока через тиристор и соответственно через нагрузку. При перемене полярности напряжения на аноде тиристора последний закрывается независимо от величины управляющего напряжения, при этом аналогично рассмотренному ранее начинает работать другое плечо схемы. Регулируя угол задержки включения а по отношению к приложенному напряжению, можно изменять соотношение фаз начала протекания тока и приложенного напряжения и регулировать величину среднего значения выпрямленного тока (напряжения) нагрузки от максимума (α = 0) до нуля (α = π). Угол задержки включения тиристоров Д1 и Д4 изменяется потенциометром R1. Диоды Д3 защищают цени управления (запуска) от отрицательного напряжения в то время, когда напряжение на анодах тиристоров отрицательное. Для получения широких пределов регулировки α (0 — π) применены RC - цепи. В выпрямителе (Рисунок 19) тиристор и схема запуска работают как в положительный, так и в отрицательный полупериоды, время разряда конденсаторов сокращается, что приводит к уменьшению диапазона изменения угла а и, соответственно, к уменьшению пределов регулирования напряжения на нагрузке. Для устранения этого явления включен диод Д3. Рисунок 19 - Принципиальная схема выпрямителя №2
Тиристоры для выпрямителя (Рисунок 18) желательно выбирать с близким значением сопротивления участка управляющий электрод — катод. Если не удается подобрать одинаковые тиристоры, то схему можно симметрировать с помощью дополнительного сопротивления. Для этого включают эквивалент нагрузки и изменением величины сопротивления потенциометра R1 устанавливают максимальный ток. Поочередно отключая цепи управления тиристоров, измеряют ток каждого плеча выпрямителя. Переменное сопротивление величиной 10 кОм подключается параллельно управляющему электроду к катоду того тиристора, через который течет больший ток. Изменяя величину этого сопротивления, добиваются одинаковых показаний тока. Учитывая разброс параметров тиристоров, необходимо скорректировать сопротивления резисторов R1 и R2. Вначале R1 берется несколько больше рассчитанного, а R2 определяется как остаточное сопротивление потенциометра R1 при условии, что его изменение не приводит к увеличению тока нагрузки. Максимальная величина R1 ограничивается сопротивлением, при котором ток нагрузки равен нулю. Конструктивно тиристоры необходимо размещать на радиаторах с площадью 50 кв.см (Рисунок 18), 250 кв.см - (Рисунок 19). Во всех вариантах использован трансформатор, собранный на обычном сердечнике УШ35х55. Для намотки взят провод марки ПЭВ. Первичная обмотка содержит 550 витков, диаметр провода 0,55 мм. Данные вторичных обмоток: для варианта на Рисунок 18 - число витков 2х60 проводом ПЭЛ диаметром 1,35 мм.; для варианта на Рисунок 19 - число витков 2х64 проводом ПЭЛ диаметром 1,35 мм.
Преобразователи постоянного тока в переменный
Преобразователями постоянного тока в переменный являются инверторы. Инвертор — устройство для преобразования постоянного тока или переменного в переменный ток[1] с изменением величины напряжения или без и частоты. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде или дискретного сигнала. Различают управляемы и неуправляемые инверторы. Управляемые инверторы выполняются на базе тиристоров(однофазные инверторы), неуправляемые выполняются на базе диодов(трехфазные, n-фазные инверторы).
Преобразователи постоянного тока в постоянный без изменением параметров
Преобразователями постоянного тока в постоянный без изменением параметров явряются однофазные инверторы. Однофазный инвертор Инвертор автомобильный. Преобразует постоянное напряжение бортовой сети (12В) в переменное напряжение бытовой электросети (220В). Рисунок 20 - Синусоида, снятая в сети 220
Верхушки срезаны из-за большого числа импульсных преобразователей Рисунок 21 - Модифицированный синус, снятый с ИБП
Модифицированный синус, снятый с ИБП, работающего от аккумулятора Существуют несколько групп инверторов, которые различаются по стоимости примерно в 15 раз: § Первая группа более дорогих инверторов обеспечивает синусоидальное выходное напряжение. § Вторая группа обеспечивает выходное напряжение упрощённой формы, заменяющей синусоиду. Чаще всего используется сигнал в виде трапецеидального синуса Для подавляющего большинства бытовых приборов допустимо использовать переменное напряжение с упрощённой формой сигнала. Синусоида важна только для некоторых телекоммуникационных, измерительных, лабораторных приборов, медицинской аппаратуры, а также профессиональной аудио аппаратуры. Выбор инвертора производится исходя из пиковой мощности энергопотребления стандартного напряжения 220В/50Гц. Существуют три режима работы инвертора: § Режим длительной работы. Данный режим соответствует номинальной мощности инвертора. § Режим перегрузки. В данном режиме большинство моделей инверторов в течение нескольких десятков минут (до 30) могут отдавать мощность в 1,2-1,5 раза больше номинальной. § Режим пусковой. В данном режиме инвертор способен отдавать повышенную моментальную мощность в течение нескольких миллисекунд для обеспечения запуска электродвигателей и емкостных нагрузок. В течение нескольких секунд большинство моделей инверторов могут отдавать мощность в 1,5-2 раза превышающую номинальную. Сильная кратковременная перегрузка возникает, например, при включении холодильника. Как правило, мощность инвертора примерно равна либо выше расчётной мощности ветроустановки.
Преобразователи постоянного тока в постоянный с изменением параметров
Преобразователями постоянного тока в постоянный с изменением параметров являются трехфазные инверторы и N-фазные инверторы. Трёхфазные инверторы Рисунок 22 - Тиристорный (GTO) тяговый преобразователь по схеме «Ларионов-звезда»
Трёхфазные инверторы обычно используются для создания трёхфазного тока для электродвигателей, например для питания трёхфазного асинхронного двигателя. При этом обмотки двигателя непосредственно подключаются к выходу инвертора. Высокомощные трёхфазные инверторы применяются в тяговых преобразователях в электроприводе локомотивов, теплоходов, троллейбусов (например, АКСМ-321), трамваев, прокатных станов, буровых вышек, в индукторах (установки индукционного нагрева[2]). На рисунке приведена схема тиристорного тягового преобразователя по схеме «Ларионов-звезда». Теоретически возможна и другая разновидность схемы Ларионова «Ларионов-треугольник», но она имеет другие характеристики (эквивалентное внутреннее активное сопротивление, потери в меди и др.).
N-фазные инверторы
Однофазные, двухфазные, трёхфазные и многофазные инверторы строят по таким же схемам, как и однофазные, двухфазные, трёхфазные и многофазные выпрямители, только вместо диодов ставят ключи, тиристорные (GTO), транзисторные (IGBT, БСИТ) или др.
Конденционеры электроэнергии
Кондиционер электроэнергии – стабилизатор напряжения или тока. Стабилизатор напряжения — преобразователь электрической энергии, позволяющий получить на выходе напряжение, находящееся в заданных пределах при значительно больших колебаниях входного напряжения и сопротивления нагрузки. По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного тока и переменного тока. Как правило, тип питания (постоянный либо переменный ток) такой же, как и выходное напряжение, хотя возможны исключения.
Стабилизаторы постоянного тока
Рисунок 23 - Микросхема линейного стабилизатора КР1170ЕН8
Линейный стабилизатор Линейный стабилизатор представляет собой делитель напряжения, на вход которого подаётся входное (нестабильное) напряжение, а выходное (стабилизированное) напряжение снимается с нижнего плеча делителя. Стабилизация осуществляется путём изменения сопротивления одного из плеч делителя: сопротивление постоянно поддерживается таким, чтобы напряжение на выходе стабилизатора находилось в установленных пределах. При большом отношении величин входного/выходного напряжений линейный стабилизатор имеет низкий КПД, так как большая часть мощности Pрасс = (Uin — Uout) * It рассеивается в виде тепла на регулирующем элементе. Поэтому регулирующий элемент должен иметь возможность рассеивать достаточную мощность, т. е. должен быть установлен на радиатор нужной площади. Преимущество линейного стабилизатора — простота, отсутствие помех и небольшое количество используемых деталей. В зависимости от расположения элемента с изменяемым сопротивлением линейные стабилизаторы делятся на два типа:
В зависимости от способа стабилизации:
- Параллельный параметрический стабилизатор на стабилитроне Рисунок 24 - Параллельный параметрический стабилизатор на стабилитроне
Применяется для стабилизации напряжения в слаботочных схемах, так как для нормальной работы схемы ток через стабилитрон D1 должен в несколько раз (3-10) превышать ток в стабилизируемой нагрузке RL. Часто такая схема линейного стабилизатора применяется как источник опорного напряжения в более сложных схемах стабилизаторов.
- Последовательный стабилизатор на биполярном транзисторе Рисунок 25 - Последовательный стабилизатор на биполярном транзисторе Основными моментами, необходимыми для понимания работы этого стабилизатора, являются: 1) Напряжение Ube практически не зависит от величины тока, протекающего через p-n переход и для приборов на основе кремния приблизительно составляет 0,6В. В расчётах схем на биполярных транзисторах чаще всего используют именно такое значение, реже 0,7В. Это напряжение, необходимое для преодоления так называемого потенциального барьера p-n перехода, существующего между областями эмиттера и базы; 2) Напряжение Uz практически не зависит от величины тока, протекающего через стабилитрон и равно напряжению стабилизации стабилитрона. Но выходное напряжение Uout = Uz — Ube. То есть выходное напряжение Uout постоянно и не зависит от тока, протекающего по нагрузке. Можно сказать, что выходное напряжение не зависит от величины нагрузки RL. Изменения входного напряжения Uin (если оно несколько больше ожидаемого выходного напряжения) также не приводят к изменениям выходного напряжения Uout. Вариант объяснения работы этого стабилизатора, начинающийся с предположения об изменении выходного напряжения Uout с последующей компенсацией за счёт изменения тока, не даёт понимания откуда берётся первоначальное изменение Uout. На самом деле незначительные изменения Uout вызваны незначительными изменениями напряжений Ube=0,6 В и Uz, вызванными изменениями протекающих через них токов. А причиной изменения токов является изменение величины нагрузки RL + изменение входного напряжения Uin.
- Последовательный компенсационный стабилизатор с применением операционного усилителя Рисунок 26 - Последовательный компенсационный стабилизатор с применением операционного усилителя
Часть выходного напряжения Uout снимаемая с потенциометра R2 сравнивается с опорным напряжением Uz на стабилитроне D1, разность напряжений усиливается операционным усилителем U1 и подаётся на базу регулирующего транзистора, включенного по схеме эмиттерного повторителя[1]. Для устойчивой работы схемы петлевой сдвиг фазы должен быть близок к 180°+n*360°. Так как часть выходного напряжения Uout подаётся на инвертирующий вход операционного усилителя U1, то операционный усилитель U1 сдвигает фазу на 180°, регулирующий транзистор включен по схеме эмиттерного повторителя, который фазу не сдвигает. Петлевой сдвиг фазы равен 180°, условие устойчивости по фазе соблюдается.
Импульсный стабилизатор В импульсном стабилизаторе ток от нестабилизированного внешнего источника подаётся на накопитель (обычно дроссель) короткими импульсами; при этом запасается энергия, которая затем высвобождается в нагрузку в виде электрической энергии, но уже с другим напряжением. Стабилизация осуществляется за счёт управления длительностью импульсов и пауз между ними — широтно-импульсной модуляции. Импульсный стабилизатор, по сравнению с линейным, обладает значительно более высоким КПД. Недостатком импульсного стабилизатора является наличие импульсных помех в выходном напряжении. В отличие от линейного стабилизатора, импульсный стабилизатор может преобразовывать входное напряжение произвольным образом (зависит от схемы стабилизатора):
Стабилизаторы переменного напряжения
Феррорезонансные стабилизаторы Рисунок 27 - Феррорезонансный стабилизатор
Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а в некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевших импульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала. Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.
Современные стабилизаторы В настоящее время основными типами стабилизаторов являются:
Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора. Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15%, ±20%, ±25%, ±30%, -25%/+15%, -35%/+15% или -45%/+15%. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности. Важной характеристикой стабилизатора напряжения является его быстродействие, то есть чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие это[источник не указан 564 дня] промежуток времени (миллисекунды) за которое стабилизатор способен изменить напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия, например у электродинамических быстродействие 12...18 мс/В, статические стабилизаторы обеспечат 2 мс/В, а вот у электронных, компенсационного типа этот параметр 0,75 мс/В. Ещё одним важным параметром является точность стабилизации выходного напряжения. Хорошие стабилизаторы имеют отклонение не более ±3%. Важным потребительским параметром является способность сохранения заявленных параметров при перегрузках по мощности.
Бареттер
Бареттер — электронный прибор, предназначенный для стабилизации силы электрического тока
Устройство и принцип действия Бареттер представляет собой заполненный водородом стеклянный баллон, внутрь которого помещена тонкая платиновая (железная, вольфрамовая) проволока (нить). Такое устройство имеет нелинейное сопротивление, при котором в определённом диапазоне токов незначительный прирост силы тока даёт значительное увеличение напряжения на выводах. Существуют также полупроводниковые эквиваленты водородного бареттера, собранные на полупроводниковых приборах (транзисторах) или интегральные. Принцип действия состоит в том, что при увеличении приложенного напряжения возрастает температура нити накала и, следовательно, ее сопротивление. В результате при изменении напряжения на бареттере сила тока практически не изменяется. Таким образом, бареттер, включенный последовательно с нагрузкой, поддерживает в ней стабильный ток при изменениях напряжения питания. Бареттеры, как правило, могут работать и при постоянном и при переменном токе. В обозначении бареттера первое число указывает его номинальный ток бареттирования в амперах, вторые два числа — пределы бареттировании в вольтах.
Примеры бареттеров - Газонаполненные
- Интегральные
Основные нормируемые характеристики
Список использованных источников
Дата добавления: 2015-06-04; Просмотров: 7375; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |