Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Трение на наклонной поверхности




Сила трения зависит от материала тел, состояния трущихся поверхностей и рода смазки.

Й закон Кулона

Согласно третьему закону трения скольжения, коэффициент трения скольжения зависит от материалов трущихся тел, качества обработки их поверхности (степени шероховатости), рода и температуры смазки. В зависимости от наличия между сопрягаемыми поверхностями слоя смазки трение подразделяется на два вида: трение без смазочного материала (сухое трение) и трение в условиях смазки.

Коэффициент трения скольжения определяют опытным путем; значения его для различных условий приведены в справочниках. Примеры коэффициентов трения для некоторых материалов приведены ниже.

· Металл по металлу без смазки....... 0,15...0,30

· То же, со смазкой...........................0,10...0,18

· Дерево по дереву без смазки........ 0,40...0,60

· Кожа по чугуну без смазки............ 0,30...0,50

· То же, со смазкой.............................. 0,15

· Сталь по льду.................................... 0,02

Коэффициент трения скольжения при движении обычно меньше, чем при покое, и в первом приближении не зависит от скорости относительного перемещения тел.

Методы решения задач статики при наличии трения остаются такими же, как и при отсутствии его, причем в уравнения равновесия обычно вводят максимальные значения сил трения.

Рассмотрим тело, лежащее на шероховатой наклонной плоскости, составляющей угол α с горизонтальной плоскостью (см. рисунок 3).
Разложим силу тяжести тела G на составляющие G1 и G2, параллельную и перпендикулярную наклонной плоскости. Модули этих составляющих определим, используя тригонометрические зависимости:

G1 = G sinα; G2 = G cosα.

Составляющая G1 стремится сдвинуть тело вдоль наклонной плоскости. Полностью или частично эта составляющая уравновешивается силой трения; согласно второму закону трения скольжения, ее максимальное значение равно:

Fтр = fN = fG cosα, где f – коэффициент трения скольжения тела по наклонной плоскости.

Для того, чтобы тело, лежащее на наклонной плоскости, находилось в равновесии, движущая сила G1 должна быть по модулю равна силе трения Fтр,т. е.

G sinα = fG cosα или tgα = f = tgφ, откуда следует, что α = φ.

Если угол, который наклонная плоскость составляет с горизонтом, будет равен углу трения, то тело, лежащее на наклонной плоскости,будет под действием собственной силы тяжести либо равномерно скользить вниз, либо находиться в состоянии покоя (что, собственно, одно и то же).

Для того, чтобы тело, лежащее на наклонной плоскости, заведомо не скользило вниз под действием собственной силы тяжести, должно быть соблюдено условие α < φ.

Наклонной плоскостью с переменным углом наклона к горизонту пользуются для экспериментального определения угла трения φ и коэффициента трения f (см. рисунок 4а).

Определим модуль силы Р, параллельной наклонной плоскости, в случае равномерного перемещения тела вверх по шероховатой наклонной плоскости (см. рисунок 4б). Спроецируем силы, действующие на тело, на ось x. Составим уравнение равновесия:

ΣX = 0; P – G sinα – Fтр = 0.

Так как Fтр = fG cosα, то P = G sinα + fG cosα или после преобразований: P = G (tgα + f).

Определим модуль горизонтальной силы Р, которую надо приложить к телу для равномерного перемещения его вверх по шероховатой наклонной плоскости (см. рисунок 5).

Применим геометрическое условие равновесия плоской системы сил (размерами тела пренебрегаем) и построим замкнутый силовой многоугольник, соответствующий уравнению равновесия:

G + P + N + Fтр = 0.

Из треугольника abc имеем: P = Gtg(α + φ).

Этот случай движения имеет место при взаимном перемещении винта и гайки с прямоугольной резьбой, так как резьбу винта можно рассматривать как наклонную плоскость, угол наклона которой равен углу подъема винтовой линии.

Трение в резьбе, имеющей треугольный или трапецеидальный профиль, подобно трению в клинчатом ползуне. Поэтому рассмотрим клинчатый ползун с углом заострения , нагруженный вертикальной силой Q (см. рисунок 6). Определим силу P, необходимую для равномерного перемещения ползуна вдоль горизонтальных направляющих, если коэффициент трения скольжения равен f.

Составим два уравнения равновесия ползуна:

ΣX = 0; P – 2Fтр = 0;
ΣY = 0; 2Nsinβ – Q = 0
,

где Fтр – сила трения на каждой грани ползуна; N – нормальная реакция направляющей.

Решая эту систему уравнений и учитывая, что Fтр = fN, получим:

P = (f/sinβ)Q = f’Q,

где f’ = f/sinβ – приведенный коэффициент трения.

Соответствующий этому приведенному коэффициенту угол трения обозначим φ’ и назовем приведенным углом трения, тогда:

f’ = tgφ ’.

Очевидно, что f’> f, следовательно, при прочих равных условиях трение в клинчатом ползуне больше трения на плоскости.

Понятие приведенного коэффициента трения условно, так как он изменяется в зависимости от угла заострения клинчатого ползуна.

По аналогии с движением тела вверх по наклонной плоскости под действием горизонтальной силы для равномерного перемещения клинчатого ползуна по направляющим, наклоненным к горизонту под углом α, нужно приложить горизонтальную силу равную

P = Q tg(α + φ’).

Трение в крепежной метрической резьбе подобно трению клинчатого ползуна с углом заострения 2β = 120˚, для трапецеидальной резьбы угол 2β = 150˚.

С трением связано понятие угла естественного откоса - наибольшим углом между наклонной плоскостью и горизонтом, при котором сыпучее тело удерживает свои частицы на поверхности, без их движения (осыпания) вниз. Угол естественного откоса сыпучего тела равен углу трения между его частицами. Этот угол приходится принимать во внимание, например, при различных земляных работах на уклонах и скатах.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 3558; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.