Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение. Классификация образов. Задача состоит в определении принадлежности входного образа (например, языкового сигнала или рукописного символа)




Классификация образов. Задача состоит в определении принадлежности входного образа (например, языкового сигнала или рукописного символа), представленного вектором признаков к одному или нескольким предварительно определенным классам. К известным приложениям относятся распознавание букв, распознавание языка, классификация сигнала электрокардиограммы, классификация клеток крови.

 

Кластеризация/категоризация. При решении задачи кластеризации, обучающее множество не имеет меток классов. Алгоритм кластеризации основан на подобии образов и помещает похожие образы в один кластер. Известны случаи применения кластеризации для добычи знаний, сжатия данных и исследования свойств данных.

 

Аппроксимация функций. Предположим, что есть обучающая выборка ((x1,y1), (x2,y2)..., (xn,yn)) (пары данных вход-выход), которая генерируется неизвестной функцией F, искаженной шумом. Задача аппроксимации состоит в нахождении неизвестной функции F. Аппроксимация функций необходима при решении многочисленных инженерных и научных задач моделирования.

 

Предвидение/прогноз. Пусть заданы n дискретных отсчетов {y(t1), y(t2),..., y(tn)} в последовательные моменты времени t1, t2,..., tn. Задача состоит в предвидении значения y(tn+1) в следующий момент времени tn+1. Предвидение/прогноз имеют большое значение для принятия решений в бизнесе, науке и технике (предвидение цен на фондовой бирже, прогноз погоды).

 

Оптимизация. Многочисленные проблемы в математике, статистике, технике, науке, медицине и экономике могут рассматриваться как проблемы оптимизации. Задачей алгоритма оптимизации является нахождение такого решения, которое удовлетворяет системе ограничений и максимизирует или минимизирует целевую функцию.

 

Память, адресуемая по смыслу. В традиционных компьютерах обращение к памяти доступно только с помощью адреса, не зависящего от содержания памяти. Более того, если допущена ошибка в вычислении адреса, то может быть найденная совсем другая информация. Ассоциативная память или память адресуемая по смыслу, доступна по указанию заданного содержания. Содержимое памяти может быть вызвано даже по частичному входу или поврежденном содержании. Ассоциативная память может быть использована в мультимедийних информационных базах данных.

 

Управление. Рассмотрим динамическую систему, заданную совокупностью {u(t), y(t)}, где u(t) - входное управляющее воздействие, а y(t) - выход системы в момент времени t. В системах управления с эталонной моделью целью управления является расчет такого входного воздействия u(t), при котором система действует по желательной траектории, заданной эталонной моделью. Примером является оптимальное управление двигателем.

Но, несмотря на преимущества нейронных сетей в отдельных областях над традиционными вычислениями, существующие нейросети не являются совершенными решениями. Они обучаются и могут делать "ошибки". Кроме того, нельзя гарантировать, что разработанная сеть будет оптимальной сетью. Применение нейросетей требует от разработчика выполнения ряда условий:

множество данных, содержащих информацию, что характеризует проблему;

соответственно установленное по размерам множество данных для обучения и тестирования сети;

понимание базовой природы решаемой проблемы;

выбор функции сумматора, передаточной функции и методов обучения;

понимание инструментальных средств разработчика;

соответствующая мощность обработки.

 

Новые возможности вычислений требует умений разработчика вне границ традиционных вычислений. Сначала, вычисления были лишь аппаратными и инженеры сделали его работающими. Потом, были специалисты по программному обеспечению: программисты, системные инженеры, специалисты по базам данных и проектировщики. Теперь появились нейронные архитекторы. Новый профессионал должен иметь квалификацию, выше чем у предшественников. Например, он должен знать статистику для выбора и оценивания обучающих и тестовых множеств.

 

При создании эффективных нейросетей, важным для современных инженеров программного обеспечения является логическое мышление, эмпирическое умение и интуиция.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 292; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.