Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Равновесие при наличии трения




Изучение равновесия тел с учетом трения сводится обычно к рассмотрению предельного положения равновесия, когда сила трения достигает своего наиболь­шего значения Fпр. При аналитическом решении задач реакцию шероховатой связи в этом случае изображают двумя составляющими N и Fпр, где . Затем составляют обычные условия равновесия статики, подставляют в них вместо Fпр величину и, решая полу­ченные уравнения, определяют искомые величины.

Пример 1. Рассмотрим тело, имеющее вертикальную плоскость симметрии (рис.28). Сечение тела этой плоскости имеет форму прямоугольника. Ширина тела равна 2 a.

К телу в точке С, лежащей на оси симметрии, приложена вертикальная сила и в точке А, лежащей на расстоянии h от основания, горизонтальная сила . Реакция плоскости основания (реакция связи) приводится к нормальной реакции и силе трения . Линия действия силы неизвестна. Расстояние от точки С до линии действия силы обозначим x ().

Рис.28

 

Составим три уравнения равновесия:

Согласно закону Кулона , т.е. . (1)

Так как , то (2)

Проанализируем полученные результаты:

Будем увеличивать силу .

Если f< a /h, то равновесие будет иметь место до тех пор, пока сила трения не достигнет своей предельной величины, условие (1) превратится в равенство. Дальнейшее увеличение силы приведет к скольжению тела по поверхности.

Если f> a /h, то равновесие будет иметь место до тех пор, пока сила трения не достигнет величины /h, условие (2) превратится в равенство. Величина x будет равна h. Дальнейшее увеличение силы приведет к тому, что тело станет опрокидываться вокруг точки B (скольжения не будет).

Пример 2. На какое максимальное рас­стояние а может подняться человек по лестнице, приставленной к стене (рис.29)? Если вес чело­века – Р, коэффициент трения скольжения между лестницей и стеной – , между лестни­цей и полом – .

Рис.29

 

Рассматриваем равновесие лестницы с че­ловеком. Показываем силу , нормальные реак­ции и и добавляем силы трения: и . Полагаем, что чело­век находится на расстоянии , при большем значении которого начнётся движение лестницы. Состав­ляем уравнения равновесия.

Подставив значения сил трения и решив систему уравнений, получим

Теперь можно определить и угол под которым надо поставить лестницу, чтоб добраться до стены. Полагая a=l, получим, после преобразований, и .

Рис.30

 

Заметим, что если равнодействующая всех активных сил (всех кроме реакций) направлена под углом (рис.30), то нормальная реакция , а сила трения Для того, чтобы началось скольжение должно выполнятся условие . или . И так как , то . Значит угол должен быть больше угла . Следовательно, если сила действует внутри угла или конуса трения (), то как бы не была ве­лика эта сила, скольжение тела не произойдёт. Такое условие называется усло­вием заклинивания, самоторможения.

Мы рассмотрели скольжение твёрдых тел по поверхности. Но нередко встречается скольжение гибких тел по неплоской по­верхности. Например, нежелательное проскальзывание в ременной передаче ремня по шкиву, или троса, каната, на­мотанного на неподвижный цилиндр.

Пример 3. Пусть имеется нить, перекинутая че­рез неподвижную цилиндрическую поверх­ность (рис.31). За счёт сил трения натяже­ние левого и правого концов этой нити бу­дут различными.

Рис.31 Рис.32

 

Предположим, что нормальная реак­ция и сила трения распределяются равно­мерно по дуге контакта нити на цилиндре. Рассмотрим равновесие участка нити дли­ной . (рис.32). На левом конце этого участка натяжение , на пра­вом . Составляем уравнения равновесия, проектируя силы на оси:

Так как угол - малая величина, то полагаем С учётом этого из уравнений находим и, так как , имеем или . Интегрируя, получим . Или

Этот результат называется формулой Эйлера.

Например, если нить перекинута через неподвижный шкив и , а ко­эффициент трения f=0,2, то отношение натяжений . А, обернув цилиндр один раз (), то есть можно удержать груз на другом конце нити силой почти в три раза меньшей веса тела.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 661; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.