Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Разрешающая способность дифракционной решетки




,

где Dl — наименьшая разность длин волн двух соседних спектральных линий (l и l+Dl,), при которой эти линии могут быть видны раздельно в спектре, полученном посредством данной решетки; N — полное число щелей решетки.

Угловая дисперсия дифракционной решетки

Линейная дисперсия дифракционной решетки

,

где F — фокусное расстояние линзы, проектирующей спектр на экран.

Формула Вульфа — Брэгга

,

где q угол скольжения (угол между направлением параллельного пучка рентгеновского излучения, падающего на кристалл, и атомной плоскостью в кристалле); d — расстояние между атомными плоскостями кристалла.

Разрешающая способность (разрешающая сила) объектива

,

где dy — наименьшее угловое расстояние между двумя точками, при котором они еще разрешаются оптическим прибором, D - диаметр объектива, l - длина волны света.

Закон Брюстера

,

где eB — угол падения, при котором отразившийся от диэлектрика луч полностью поляризован; n 21 относительный показатель преломления второй среды относительно первой.

Закон Малюса

где I о — интенсивность плоскополяризованного света, падающего на анализатор; I — интенсивность этого света после анализатора; a — угол между направлением колебаний электрического вектора света, падающего на анализатор, и плоскостью пропускания анализатора (если колебания электрического вектора падающего света совпадают с этой плоскостью, то анализатор пропускает данный свет без ослабления).

Угол поворота плоскости поляризации монохроматического света при прохождении через оптически активное вещество:

а) (в твердых телах),

где a — постоянная вращения; d — длина пути, пройденного светом в оптически активном веществе;

б) (в растворах),

где [a] — удельное вращение; r—массовая концентрация оптически активного вещества в растворе.

Релятивистская масса

,

где m o — масса покоя частицы; v — ее скорость; с —-скорость света в вакууме; b— скорость частицы, выраженная в долях скорости света (b= v/с).

Взаимосвязь массы и энергии релятивистской частицы

,

где энергия покоя частицы.

Полная энергия свободной частицы

,

где Т — кинетическая энергия релятивистской частицы.

Кинетическая энергия релятивистской частицы

.

Импульс релятивистской частицы

.

Связь между полной энергией и импульсом релятивистской частицы

Закон Стефана—Больцмана

,

где Re энергетическая светимость абсолютно черного тела, s постоянная Стефана— Больцмана; Т — термодинамическая температура Кельвина.

Если тело не является абсолютно черным, то закон Стефана—Больцмана применяют в виде

,

где a— коэффициент (степень) черноты тела (a <1).

Закон смещения Вина

,

где l m длина волны, на которую приходится максимум энергии излучения; b — постоянная Вина.

Максимальная спектральная плотность энергетической светимости абсолютно черного тела

,

где С 1 = 1,29 10-5 Вт/(м3 К5).

Энергия фотона

,

где h — постоянная Планка; постоянная Планка, деленная на 2p; n — частота фотона; w — циклическая частота.

Масса фотона

.

где с — скорость света в вакууме; l длина волны фотона.

Импульс фотона

.

Формула Эйнштейна для фотоэффекта

где h n — энергия фотона, падающего на поверхность металла; А — работа выхода электрона; T max максимальная кинетическая энергия фотоэлектрона.

Красная граница фотоэффекта

, или

где no — минимальная частота света, при которой еще возможен фотоэффект; lо — максимальная длина волны света, при которой еще возможен фотоэффект; h — постоянная Планка; с — скорость света в вакууме.

Формула Комптона

,

где l1 длина волны фотона, встретившегося со свободным или слабосвязанным электроном; l2 длина волны фотона, рассеянного на угол q после столкновения с электроном; т о масса покоящегося электрона.

Комптоновская длина волны

.

Давление света при нормальном падении на поверхность

,

где Ее энергетическая освещенность, w — объемная плотность энергии излучения; r — коэффициент отражения.

Момент импульса электрона согласно теории Бора для атома водорода

,

где m — масса электрона; vn — скорость электрона на n -й орбите; rn — радиус n -й стационарной орбиты; ћ = h /2p постоянная Планка; п — главное квантовое число (n = 1, 2,3,...).

Радиус n -й стационарной орбиты

,

где a o — первый боровский радиус.

Энергия электрона в атоме водорода

,

где Ei энергия ионизации атома водорода.

Энергия, излучаемая или поглощаемая атомом водорода,

,

где п 1 и п 2 — квантовые числа, соответствующие энергетическим уровням, между которыми совершается переход электрона в атоме.

Спектроскопическое волновое число

,

где l длина волны излучения или поглощения атомом; R — постоянная Ридберга.

Длина волны де Бройля

,

где р — импульс частицы.

Импульс частицы и его связь с кинетической энергией Т:

a) при v << c (нерелятивистский случай),

б) при v £ c (релятивистский случай),

где т о масса покоя частицы; т — релятивистская масса; v — скорость частицы; с — скорость света в вакууме; Е o энергия покоя частицы (Е o = т о c 2)

Соотношение неопределенностей:

а) (для координаты и импульса),

где D рx, — неопределенность проекции импульса на ось X,D х — неопределенность координаты;

б) (для энергии и времени),

где D E — неопределенность энергии; D t — время жизни квантовой системы в данном энергетическом состоянии.

Одномерное уравнение Шредингера для стационарных состояний

,

где y= y(х) волновая функция, описывающая состояние частицы; т — масса частицы; Е — полная энергия; U = U(x) — потенциальная энергия частицы.

Плотность вероятности

,

где dw(x) — вероятность того, что частица может быть обнаружена вблизи точки с координатой х на участке dx.

Вероятность обнаружения частицы в интервале от х 1 до х 2

.

Решение уравнения Шредингера для одномерного, бесконечно глубокого, прямоугольного потенциального ящика:

а) (собственная нормированнаяволновая функция);

б) (собственное значение энергии),

где п— квантовое число (п = 1, 2, 3,...); l— ширина ящика. В области 0 < x < l U =¥ и y(х)=0.

Массовое число ядра (число нуклонов в ядре)

,

где Z — зарядовое число (число протонов); N — число нейтронов.

Закон радиоактивного распада

, или ,

где dN — число ядер, распадающихся за интервал времени dt, N — число ядер, не распавшихся к моменту времени t; N o число ядер в начальный момент (t o=0); l постоянная радиоактивного распада.

Число ядер, распавшихся за время t,

.

В случае, если интервал времени D t, за который определяется число распавшихся ядер, много меньше периода полураспада T 1/2, то число распавшихся ядер можно определить по формуле

.

Зависимость периода полураспада от постоянной радиоактивного распада

.

Среднее время t жизни радиоактивного ядра, т. е. интервал времени, за который число нераспавшихся ядер уменьшается в е раз,

.

Число атомов N, содержащихся радиоактивном изотопе,

,

где m— масса изотопа; m молярная масса; Na постоянная Авогадро.

Активность А радиоактивного изотопа

,

где dN — число ядер, распадающихся за интервал времени dt; A o активность изотопа в начальный момент времени.

Удельная активность изотопа

.

Дефект массы ядра,

,

где Z — зарядовое число (число протонов в ядре); А — массовое число (число нуклонов в ядре); (А—Z) число нейтронов в ядре; mp — масса протона; mn — масса нейтрона; mядр — масса ядра.

Изменение энергии при ядерной реакции определяется соотношением

где å M 1—сумма масс частиц до реакции и å M 2—сумма масс частиц после реакции. Если å M 1 > å M 2, то реакция идет с выделением энергии, если же å M 1 < å M 2, то реакция идет с поглощением энергии. Отметим, что в последнюю формулу так же, как и при вычислении энергии связи ядра, мы можем подставлять массу изотопов, а не ядер, так как поправки на массу электронов оболочки входят с разными знаками и поэтому исключаются.

Энергия связи ядра

,

где D m — дефект массы ядра; с — скорость света в вакууме. Во внесистемных единицах энергия связи ядра равна E св= 931 D m, где дефект массы D m —в а.е.м.; 931— коэффициент пропорциональности (1 а.е.м.~931 МэВ).




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 586; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.038 сек.