Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Картографические анимации




Читайте также:
  1. Другие картографические произведения.
  2. Другие картографические произведения.
  3. К терминальным состояниям относят все стадии умирания — преагонию, агонию, клиническую смерть, а также начальный этап состояния после успешной реанимации.
  4. Картографические источники
  5. Картографические прогнозы
  6. Картографические проекции
  7. Картографические проекции
  8. Картографические проекции.
  9. Картографические проекции. Модель эллипсоида вращения
  10. Картографические произведения.
  11. Картографические условные знаки и их функции.

В традиционной картографии известны три способа отображе­ния динамики явлений и процессов, их возникновения, разви­тия, изменений во времени и перемещения в пространстве (см. разд. 4.14 и 8.4):

♦ показ динамики на одной карте с помощью стрелок или лент движения, «нарастающих» знаков и диаграмм, расширяю­щихся ареалов, изолиний скоростей изменения явлений и т.п.;

♦ показ динамики с помощью серий разновременных карт, снимков, фотокарт, блок-диаграмм и др., фиксирующих со­стояния объектов в разные моменты (периоды) времени;

♦ составление карт изменения состояний явления (см. разд. 13.4), когда показывается не сама динамика, а лишь результаты про­исшедших изменений (ареалы изменений).

Геоинформационное картографирование существенно расши­ряет возможности отображения динамики геосистем, вводя в прак­тику картографические анимации (мультипликации) — особые динамические последовательности карт-кадров, создающие при демонстрации эффект движения. Анимации прочно вошли в по­вседневную жизнь, они стали столь же привычными, как косми­ческие снимки и электронные карты. Хорошо известным приме­ром могут служить телевизионные карты прогноза погоды, на ко­торых видны перемещения фронтов, областей высокого и низкого давления, атмосферные осадки.


Разработано множество технологий и методик получения движу­щихся изображений. Созданы особые компьютерные программы, которые содержат модули, обеспечивающие самые разные вари­анты и комбинации картографических анимаций:

♦ перемещение всей карты по экрану;

♦ мультипликационные последовательности карт-кадров или
3-мерных изображений;

♦ изменение скорости демонстрации, покадровый просмотр, возврат к избранному кадру, обратная последовательность;

♦ перемещение отдельных элементов содержания (объектов, зна­ков) по карте;

♦ изменение вида элементов содержания (объектов, знаков), их размеров, ориентации, мигание знаков и др.;

♦ варьирование окраски (пульсация и дефилирование), изме­нение интенсивности, создание эффекта вибрации цвета;

♦ изменение освещенности или фона, «подсвечивание» и «за­тенение» отдельных участков карты;

♦ панорамирование, изменение проекции и перспективы (точки обзора, ракурса, наклона), вращение 3-мерных изображений;

♦ масштабирование (зуммирование) изображения или его час­ти, использование эффекта «наплыва» или удаления объекта;

♦ создание эффекта движения над картой («облет» территории), в том числе с разной скоростью.

Анимации можно демонстрировать с нормальной (24 кадра в секунду), ускоренной или замедленной скоростью. Отсюда возни­кают совершенно новые для картографии проблемы временной генерализации, выбора изобразительных средств, изучения прин­ципов восприятия читателями движущихся карт и т.п.



Динамические изображения добавляют традиционным статич­ным картам столь необходимый исследователям временной аспект. В связи с этим оправдано введение понятия масштаба времени (или временного масштаба). В определенном смысле можно гово­рить о медленно-, средне- и быстромасштабных изображениях, приняв следующие соотношения:

1:86 000 — одна секунда демонстрации анимационной карты соот­ветствует (округленно) одним суткам; 1:600 000 — в одной секунде — одна неделя; 1:2 500 000 — в одной секунде — один месяц; 1:31 500 000 — в одной секунде — один год.

18-4886


274 Глава XIV. Картография и геоинформатика


Виртуальное картографирование 275


 


14.7. Виртуальное картографирование

Дальнейшее развитие геоинформационных технологий приве­ло к созданию изображений, сочетающих свойства карты, перс­пективного снимка, блок-диаграммы и компьютерной анимации. Такие изображения получили название виртуальных (от лат. \ШиаИз — возможный, потенциальный). Этот термин имеет несколь­ко смысловых оттенков: возможный, потенциальный, не суще­ствующий, но способный возникнуть при определенных услови­ях, временный или непродолжительно существующий, а главное — не реальный, но такой же, как реальный, неотличимый от реально­го. В машинной графике визуализация виртуальной реальности пред­полагает, прежде всего, применение эффектов трехмерности и ани­мации. Именно они создают иллюзию присутствия в реальном про­странстве й возможности интерактивного взаимодействия с ним.

В картографии виртуальные моделипонимаются как изображе­ния реальных или мысленных объектов, формируемые и суще­ствующие в программно-управляемой среде. Как любое кар­тографическое изображение, они имеют проекцию, масштаб и обладают генерализованностью. Сама же виртуальная реаль­ность— это интерактивная технология, позволяющая воспроиз­водить реальные и (или) мысленные объекты, их связи и отноше­ния в программно-управляемой среде.

Считается, что отказ от условных знаков, стремление придать виртуальным изображениям «натуральность», объемность, есте­ственную окраску и освещение создает иллюзию реального суще­ствования объекта. Тем самым ускоряется процесс коммуникации, и повышается эффективность передачи пространственной инфор­мации.

Технологии создания виртуальных изображений моногообраз-ны. Обычно вначале по топографической карте, аэро- или косми­ческому снимку создается цифровая модель, затем — трехмерное изображение местности. Его окрашивают в цвета гипсометричес­кой шкалы либо совмещают с фотоизображением ландшафта и далее используют как реальную модель.

Одна из наиболее распространенных виртуальных операций — «облет» полученного изображения. Специальные программные модули обеспечивают управление полетом: движение по избран­ному направлению, повороты, развороты, изменение скорости,


показ перспективы. С помощью клавиатуры и джойстика (манипу­лятора в форме рукоятки с кнопками) можно вьщерживать полет на заданной высоте, с установленной скоростью, над точками с заранее избранными координатами. Кроме того, предусмотрены возможности выбора состояния неба (облачности), тумана, усло­вий освещения местности, высоты Солнца, времени дня, эффек­тов дождя или снегопада и т.п. Модули редактирования позволяют дополнительно наносить новое тематическое содержание, менять текстуру местности, использовать цветные сетки и подложки, раз­мещать надписи, выбирая размер и цвет шрифтов, добавлять тек­сты и даже звуки.

Крупномасштабные тематические виртуальные изображения дают довольно подробное представление о рельефе и ландшафте, геологическом строении, водных объектах, растительном покро­ве, городах, путях сообщения и т.п. Возможность интеграции раз­ной тематической информации в единой модели — одно из глав­ных достоинств виртуального изображения. Пролетая и «зависая» над горами, можно детально рассмотреть террасированность их склонов, провести морфометрические измерения, определить ха­рактер эрозионных и оползневых процессов, а двигаясь над город­скими территориями, — оценить особенности застройки и рас­пределения зеленых массивов, спроектировать размещение новых зданий и транспортных магистралей.

При виртуальном моделировании часто используют многоуров­невую аппроксимацию. По одной и той же цифровой модели рель­ефа, ландшафта или растительного покрова выполняют несколько аппроксимаций с разными уровнями детальности. Это позволяет не ограничиваться увеличением или уменьшением масштаба, а переходить при необходимости на иной уровень детальности. Так возникает своеобразная мультиуровневая генерализация.

Наибольшее применение виртуальные изображения имеют при решении таких практических задач, как мониторинг районов при­родного риска, строительство зданий и автострад, прокладка тру­бопроводов, оценка загрязнения среды и распространения шумов от аэропортов и т.п. Возможно использование аналогичных техно­логий в научных и учебных целях, например для создания средне-и мелкомасштабных виртуальных изображений, в том числе гло­бусов. На глобусах изображают, скажем, природную зональность земного шара, ход климатических процессов, сезонные измене­ния растительного покрова и ландшафта, миграцию населения,


18*


276 Глава XIV. Картография и геоинформатика

движение транспортных потоков и т.д. Сюжеты виртуальных тема­тических карт столь же разнообразны, как и в традиционном кар­тографировании.





Дата добавления: 2015-06-04; Просмотров: 2102; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2019) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.002 сек.