Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Сформулируйте основные положения квантовой теории фотоэффекта. Следствием какого фундаментального закона физики является уравнение Эйнштейна для фотоэффекта?




Попытаемся объяснить экспериментальные законы фотоэффекта, используя электромагнитную теорию Максвелла. Электромагнитная волна заставляет электроны совершать электромагнитные колебания. При постоянной амплитуде вектора напряженности электрического поля количество энергии, полученной в этом процессе электроном, пропорционально частоте волны и времени "раскачивания". В этом случае энергию, равную работе выхода, электрон должен получить при любой частоте волны, но это противоречит третьему экспериментальному закону фотоэффекта. При увеличении частоты электромагнитной волны больше энергии за единицу времени передается электронам, и фотоэлектроны должны вылетать в большем количестве, а это противоречит первому экспериментальному закону. Таким образом, эти факты объяснить в рамках электромагнитной теории Максвелла было невозможно.

В 1905 г. для объяснения явления фотоэффекта А. Эйнштейн использовал квантовые представления о свете, введенные в 1900 г. Планком, и применил их к поглощению света веществом. Монохроматическое световое излучение, падающее на металл, состоит из фотонов. Фотон — это элементарная частица, обладающая энергией W0=hν. Электроны поверхностного слоя металла поглощают энергию этих фотонов, при этом один электрон поглощает целиком энергию одного или нескольких фотонов. Если энергия фотона W0 равна или превышает работу выхода, то электрон вылетает из металла. При этом часть энергии фотона тратится на совершение работы выхода Ав, а остальная часть переходит в кинетическую энергию фотоэлектрона:

Оно представляет собой закон сохранения энергии в применении к фотоэффекту. Это уравнение записано для однофотонного фотоэффекта, когда речь идет о вырывании электрона, не связанного с атомом (молекулой).

Отсюда видно, что максимальная кинетическая энергия фотоэлектронов линейно зависит от частоты падающего света, а красная граница фотоэффекта — от рода вещества катода (второй и третий законы фотоэффекта).




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1221; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.