Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ошибка, состоящая в том, что мы отклонили нулевую гипотезу, в то время как она верна, называется ошибкой 1 рода




Уровни статистической значимости

Уровень значимости - это вероятность того, что мы сочли разли­чия существенными, а они на самом деле случайны.

Когда мы указываем, что различия достоверны на 5%-ом уровне значимости, или при р< 0,05, то мы имеем виду, что вероятность того, что они все-таки недостоверны, составляет 0,05.

Когда мы указываем, что различия достоверны на 1%-ом уровне значимости, или при р< 0,01, то мы имеем в виду, что вероятность того, что они все-таки недостоверны, составляет 0,01.

Если перевести все это на более формализованный язык, то уро­вень значимости - это вероятность отклонения нулевой гипотезы, в то время как она верна.

Вероятность такой ошибки обычно обозначается какα. В сущно­сти, мы должны были бы указывать в скобках не р≤0,05 или р≤0,01, а α≤0,05 или α≤0,01. В некоторых руководствах так и делается (Рунион Р., 1982; Захаров В.П., 1985 и др.).

Если вероятность ошибки - это α, то вероятность правильного решения: 1 — α. Чем меньше α, тем больше вероятность правильного решения.

Исторически сложилось так, что в психологии принято считать низшим уровнем статистической значимости 5%-ый уровень (р< 0,05): достаточным - 1%-ый уровень (р< 0,01) и высшим 0,1%-ый уровень (р< 0,001), поэтому в таблицах критических значений обычно приводят­ся значения критериев, соответствующих уровням статистической зна­чимости р< 0,05 и р< 0,01, иногда - р< 0,001. Для некоторых критериев в таблицах указан точный уровень значимости их разных эмпирических значений. Например, для φ*=1,56 р= 0,06.

До тех пор, однако, пока уровень статистической значимости не достигнет р= 0,05, мы еще не имеем права отклонить нулевую гипотезу. В настоящем руководстве мы, вслед за Р. Рунионом (1982), будем придерживаться следующего правила отклонения гипотезы об отсутст­вии различий (H0) и принятия гипотезы о статистической достоверно­сти различий (Н1).

Правило отклонения H0 и принятия H1

Если эмпирическое значение критерия равняется критическому значе­нию, соответствующему р< 0,05 или превышает его, то H0 отклоняет­ся, но мы еще не можем определенно принять H1. Если эмпирическое значение критерия равняется критическому значе­нию, соответствующему р< 0,01 или превышает его, то H0 отклоняется и принимается H1.

Исключения: критерий знаков G, критерий Т Вилкоксона и критерий U Манна-Уитни. Для них устанавливаются обратные соотношения.

Для облегчения процесса принятия решения можно всякий раз вычерчивать "ось значимости".

Критические значения критерия обозначены как Q0,05 и Q0,01, эмпирическое значение критерия как Qэмп. Оно заключено в эллипс.

Вправо от критического значения Q0,01 простирается "зона зна­чимости" - сюда попадают эмпирические значения, превышающие Q0,01 и, следовательно, безусловно значимые.

Влево от критического значения Q0,05 простирается "зона незна­чимости", - сюда попадают эмпирические значения Q, которые ниже Q0,05, и, следовательно, безусловно незначимы.

Мы видим, что Q0,05=6; Q0,01=9; Qэмп =8

Эмпирическое значение критерия попадает в область между Q0,05 и Q0,01- Это зона "неопределенности": мы уже можем отклонить гипо­тезу о недостоверности различий (H0), но еще не можем принять гипо­тезы об их достоверности (H1).

Практически, однако, исследователь может считать достоверными уже те различия, которые не попадают в зону незначимости, заявив, что они достоверны при р< 0,05, или указав точный уровень значимости полу­ченного эмпирического значения критерия, например: р= 0,02. С помощью таблиц Приложения 1 это можно сделать по отношению к критериям Н Крускала-Уоллиса, χ2, Фридмана, L Пейджа, φ* Фишера, А, Колмогорова.

Уровень статистической значимости или критические значения критериев определяются по-разному при проверке направленных и не­направленных статистических гипотез.

При направленной статистической гипотезе используется одно­сторонний критерий, при ненаправленной гипотезе - двусторонний кри­терий. Двусторонний критерий более строг, поскольку он проверяет различия в обе стороны, и поэтому то эмпирическое значение критерия, которое ранее соответствовало уровню значимости р< 0,05, теперь соот­ветствует лишь уровню р< 0,10.

В данном руководстве исследователю не придется всякий раз са­мостоятельно решать, использует ли он односторонний или двухсторон­ний критерий. Таблицы критических значений критериев подобраны таким образом, что направленным гипотезам соответствует односторон­ний, а ненаправленным - двусторонний критерий, и приведенные значе­ния удовлетворяют тем требованиям, которые предъявляются к каждому из них. Исследователю необходимо лишь следить за тем, чтобы его гипотезы совпадали по смыслу и по форме с гипотезами, предлагаемы­ми в описании каждого из критериев.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 780; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2025) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.