Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алгоритм 10




Пример

Ограничения критерия

1. Нижний порог: не менее 2-х испытуемых (n ≥2), каждый из которых прошел не менее 3-х замеров (с≥3).

2. При с=3, n9, уровень значимости полученного эмпирического зна­чения χ2 rопределяется по Таблице VII-A Приложения 1; при с=4, n ≤4, уровень значимости полученного эмпирического значения χ2 r определяется по Таблице VII-Б Приложения 1; при больших коли­чествах испытуемых или условий полученные эмпирические значения χ2 rсопоставляются с критическими значениями χ2 r, определяемыми по Таблице IX Приложения 1. Это объясняется тем, что χ2 rимеет распределение, сходное с распределением χ2 r. Число степеней свобо­ды v определяется по формуле:

v =c—1,

где с - количество условий измерения (замеров).

На Рис. 3.5. представлены графики изменения времени решения анаграмм в эксперименте по исследованию интеллектуальной настойчи­вости (Сидоренко Е. В., 1984). Анаграммы нужно было подобрать таким образом, чтобы постепенно подготовить испытуемого к самой трудной - а фактически неразрешимой - задаче. Иными словами, испы­туемый должен был постепенно привыкнуть к тому, что задачи стано­вятся все более и более трудными, и что над каждой последующей анаграммой ему приходится проводить больше времени. Достоверны ли различия во времени решения испытуемыми анаграмм?

Таблица 3.5

Показатели времени решения анаграмм (сек.)

Код имени испытуемого Анаграмма 1: КРУА (РУКА) Анаграмма 2: АЛСТЬ (СТАЛЬ) Анаграмма 3: ИНААМШ (МАШИНА)
1. Л-в 2. П-о 3. К-в 4. Ю-ч 5. Р-о   235*[11]  
Суммы      
| Средние 10,2 248,8 9,4

Проранжируем значения, полученные по трем анаграммам каж­дым испытуемым. Например, испытуемый К-в меньше всего времени провел над анаграммой 1 - следовательно, она получает ранг 1. На вто­ром месте у него стоит анаграмма 3 - она получает ранг 2. Наконец, анаграмма 2 получает ранг 3, потому что она решалась им дольше двух других.

Сумма рангов по каждому испытуемому должна составлять 6.

Расчетная общая сумма рангов в критерии определяется по формуле:

где n - количество испытуемых

с - количество условий измерения (замеров).

В данном случае,

Таблица 3.6

Показатели времени решения анаграмм 1, 2, 3 и их ранги (n= 5)

Код имени испытуемого Анаграмма 1 Анаграмма 2 Анаграмма 3
    Время (сек) Ранг Время (сек) Ранг Время (сек) Ранг
1. Л-в            
2. П-о            
3. К-в            
4. Ю-ч            
5. Р-о            
Суммы            

 

Общая сумма рангов составляет: 6+15+9—30, что совпадает с расчетной величиной.

Мы помним, что испытуемый Л-в провел 3 минуты и 55 сек над решением второй анаграммы, но так и не решил ее. Поскольку он ре­шал ее дольше остальных двух анаграмм, мы имеем право присвоить ей ранг 3. Ведь назначение трех первых анаграмм - подготовить испытуе­мого к тому, что над следующей анаграммой ему, возможно, придется думать еще дольше, в то время как сам факт нахождения правильного ответа не так существен.

Сформулируем гипотезы.

Н0: Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, являются случайными.

H1: Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, не являются случайными.

Теперь нам нужно определить эмпирическое значение χ2 rпо формуле:

где с - количество условии;

п - количество испытуемых;

Тi - суммы рангов по каждому из условий.

 

Определим χ2 rдля данного случая:

Поскольку в данном примере рассматриваются три задачи, то есть 3 условия, с=3. Количество испытуемых n= 5. Это позволяет нам воспользоваться специальной таблицей χ2 r, а именно Табл. VII-A При­ложения 1. Эмпирическое значение χ2 r=8,4 при с=3, n= 5 точно соот­ветствует уровню значимости р=0,0085.

Ответ: Но отклоняется. Принимается H1. Различия во времени, которое испытуемые проводят над решением трех различных анаграмм, неслучайны (р=0,0085).

Теперь мы можем сформулировать общий алгоритм действий по применению критерия χ2 r.

 

Подсчет критерия χ2 rФридмана

1.Проранжировать индивидуальные значения первого испытуемого, полученные им в 1-м, 2-м, 3-м и т. д. замерах.

2.Проделать то же самое по отношению ко всем другим испытуемым.

3.Просуммировать ранги по условиям, в которых осуществлялись за­меры. Проверить совпадение общей суммы рангов с расчетной сум­мой.

4.Определить эмпирическое значение χ2 rпо формуле:

где с - количество условии;

п - количество испытуемых;

Ti - суммы рангов по каждому из условий.

5.Определить уровни статистической значимости для χ2 r

а)при с=3, n< 9 - по Табл. VII-A Приложения 1;

б)при с=4, n<4 - по Табл. VII-Б Приложения 1.

6.При большем количестве условий и/или испытуемых - определить количество степеней свободы v по формуле:

v =c-1,

где с - количество условий (замеров).

По Табл. IX Приложения 1 определить критические значения кри­терия χ2 при данном числе степеней свободы V.

Если χ2 r эмп равен критическому значению χ2 или превышает его, различия достоверны.

 

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1248; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.