КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Линейное программирование
Допустим, дана система т линейно независимых уравнений с n неизвестными x1,…, хп, называемая системой ограничений задачи линейного программирования: Характерной особенностью данной задачи является то, что число уравнений меньше числа неизвестных, т. е. m<n. Требуется найти неотрицательные значения переменных , которые удовлетворяют уравнениям ограничения и обращают в минимум целевую функцию Иногда в задаче линейного программирования все или некоторые из уравнений имеют вид неравенств. Так, вместо уравнения в систему может входить неравенства вида или От таких неравенств легко перейти к уравнениям, вводя добавочную переменную хn+j³0 так, чтобы в зависимости от знака неравенства имело место одно из двух выражений Поскольку число переменных п в этой системе больше числа уравнений т, то одно из возможных решений можно найти, если п — т каких-либо переменных положить равными нулю. Полученную при этом систему т уравнений с т неизвестными можно решать обычными методами линейной алгебры. Правда, для того чтобы система т уравнений с т неизвестными имела решение, необходимо, чтобы определитель, составленный из коэффициентов при неизвестных, не обращался в нуль. Если это условие не выполняется, то можно приравнять нулю другие п — т переменных. Полученное при этом решение называется базисным решением. Базисом называется любой набор т переменных, таких, что определитель, составленный из коэффициентов, при этих переменных не равен нулю. Эти т переменных называются базисными переменными (по отношению к данному базису). Остальные п — т переменных называются небазисными или свободными переменными В каждой конкретной системе уравнений может существовать несколько различных базисов с различными базисными переменными. Если положить все свободные переменные равными нулю и решить полученную систему т уравнений с т неизвестными, то получим базисное решение. Однако среди различных базисных решений будут такие, которые дают отрицательные значения некоторых переменных. Эти базисные решения противоречат условию задачи и являются недопустимыми.
Дата добавления: 2015-06-04; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |