Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные понятия теории систем и системного анализа




Уметь

Знать

Цели и задачи дисциплины

Донецк, 2009

 

Методичні вказівки до самостійної роботи з дисципліни «Системний аналіз і проектування комп’ютерних інформаційних систем» для студентів спеціальності «Системний аналіз і управління» / Упоряд.: О.М.Шушура. - Донецьк: ДУІ і ШІ, 2009.- 62с.- рос. мовою.

Упорядники: О.М. Шушура.

 

СОДЕРЖАНИЕ

 

  • Цели и задачи дисциплины.....................................
  • Основные понятия теории систем и системного анализа.............
  • Формальные модели систем.....................................
  • Объектно-ориентированный анализ систем. Основы UML...........
  • Проектирование информационных систем........................
Список использованных источников................................  
 

 

  • Цели и задачи дисциплины

 

 

Предметом курса являются задачи формального описания сложных систем и проектирования компьютерных информационных систем.

Цель курса – обучить студентов методикам формального описания различных объектов и современным технологиям и техническим средствам проектирования информационных систем. Студент, освоивший основы курса, сможет самостоятельно решать задачи проектирования компьютерных информационных систем для предприятий различных сфер экономики.

Курс «Системный анализ и проектирование компьютерных информационных систем» состоит из теоретической и практической частей.

В результате изучения курса студент должен

1. основные понятия теории систем, классификацию систем, жизненный цикл системы;

2. методы системного анализа для выработки оптимальных решений;

3. методы создания морфологических, функциональных и информационных моделей систем;

4. методы структурного и объектно-ориентированного анализа;

5. САSE-средства описания и проектирования информационных систем;

6. основные понятия, классификацию, жизненный цикл информационных систем;

7. методику и стандарты проектирования компьютерных информационных систем.

8. применять понятия и методы системного анализа при исследовании и описании объектов произвольной природы;

9. формировать оптимальные решения по управлению системами на основе методов системного анализа;

10. создавать морфологические, функциональные и информационные модели систем;

11. применять методы структурного и объектно-ориентированного анализа при описании сложных систем;

12. владеть САSE-средствами для описания и проектирования компьютерных информационных систем;

13. проектировать информационные системы, используя современные методы и стандарты.

 

Контрольные вопросы:

o Что является предметом изучения дисциплины?

o Что должен знать студент, изучивший дисциплину?

o Что должен уметь студент, изучивший дисциплину?

 

Системный анализ, чьи основы являются достаточно древними, - все же сравнительно молодая наука (сравнима по возрасту, например, с кибернетикой). Хотя она и активно развивается, ее определяющие понятия и термины недостаточно формализованы (если это вообще возможно осуществить). Системный анализ применяется в любой предметной области, включая в себя как частные, так и общие методы и процедуры исследования. Эта наука, как и любая другая, ставит своей целью исследование новых связей и отношений объектов и явлений. Но, тем не менее, основной проблемой нашей науки является исследование связей и отношений таким образом, чтобы изучаемые объекты стали бы более управляемыми, изучаемыми, а «вскрытый» в результате исследования механизм взаимодействия этих объектов – более применимым к другим объектам и явлениям. Задачи и принципы системного подхода не зависят от природы объектов и явлений.

При изложении основ анализа, синтеза и моделирования систем возможны два основных подхода: формальный и понятийно-содержательный. Формальный подход использует формальный математический аппарат различного уровня строгости и общности (от простых соотношений до операторов, функторов, категорий, алгебр). Понятийно-содержательный подход – концентрируется на основных понятиях, идеях, подходе, концепциях, возможностях, на основных методологических принципах, использует «полуформальное» введение в суть рассматриваемых идей и понятий. Многие идеи и принципы системного анализа, хотя и более точны, строги на формальном языке изложения, тем не менее, сохраняют свою силу, актуальность, возможность эффективного использования и на содержательном языке. Необходимо отметить, что часто один удачный понятный пример имеет большее значение для понимания этих принципов, чем строгие математические определения. Кроме того, фактор неопределенности в системном анализе ограничивает применимость строгих математических формулировок и выводов.

Слово «система» (организм, строй, союз, целое, составленное из частей) возникло в Древней Греции около 2000 лет назад. Древние ученые (Аристотель, Демокрит, Декарт, Платон и другие) рассматривали сложные тела, процессы и мифы мироздания как составленные из различных систем (например, атомов, метафор). Развитие астрономии (Коперник, Галилей, Ньютон и другие) позволило перейти к гелиоцентрической системе мира, к категориям типа «вещь и свойства», «целое и часть», «субстанция и атрибуты», «сходство и различие» и др. Далее развитие системного анализа происходит под влиянием различных философских воззрений, теорий о структуре познания и возможности предсказания (Бэкон, Гегель, Ламберт, Кант, Фихте и другие). В результате такого развития системный анализ выходит на позиции методологической науки. Естествоиспытатели XIX-XX вв. (Богданов, Берталанфи, Винер, Эшби и другие) не только актуализировали роль модельного мышления и моделей в естествознании, но и сформировали основные системообразующие принципы, принципы системности научного знания, «соединили» теорию открытых систем, философские принципы и достижения естествознания. Современное развитие теория систем, системный анализ получили под влиянием достижений как классических областей науки (математика, физика, химия, биология, история и др.), так и неклассических областей (синергетика, информатика, когнитология, теории нелинейной динамики и динамического хаоса, катастроф, нейроматематика, нейроинформатика и др.). Необходимо особо подчеркнуть влияние техники (с древнейших времен) и технологии (современности) на развитие системного анализа, в частности, на ее прикладную ветвь – системотехнику, на методологию проектирования сложных технических систем. Это влияние – взаимное: развитие техники и технологии обогащает системный анализ новыми методами, моделями, средами.

Эпоха зарождения основ системного анализа была характерна рассмотрением чаще всего систем физического или философского (гносеологического) происхождения. При этом постулат (Аристотеля): «Важность целого превыше важности его составляющих» сменился позже на новый постулат (Галилея): «Целое объясняется свойствами его составляющих».

Наибольший вклад в зарождение и развитие системного анализа, системного мышления внесли такие ученые, как Р. Декарт, Ф. Бэкон, И. Кант, И. Ньютон, Ф. Энгельс, А.И. Берг, А.А. Богданов, Н. Винер, Л. Берталанфи, Ч. Дарвин, И. Пригожин, Э. Эшби, А.А. Ляпунов, Н.Н. Моисеев и другие. Идеи системного анализа развивали также А. Аверьянов, Р. Акофф, В. Афанасьев, Р. Абдеев, И. Блауберг, Н. Белов, Л. Бриллюэн, Н. Бусленко, В. Волкова, Д. Гвишиани, В. Геодакян, К. Гэйн, А. Денисов, Е. Дубровский, В. Завадский, Ю. Климонтович, Д. Колесников, Э. Квейд, В. Кузьмин, О. Ланге, Е. Луценко, В. Лекторский, В. Лефевр, Ю. Либих, А. Малиновский, М. Месарович, В. Могилевский, К. Негойце, Н. Овчинников, С. Оптнер, Ф. Перегудов, Д. Поспелов, А. Рапопорт, Л. Растригин, С. Родин, Л. Розенблют, В. Садовский, В. Сегал, В. Симанков, Б. Советов, В. Солодовников, Ф. Тарасенко, К. Тимирязев, А. Уемов, Ю. Черняк, Г. Хакен, Дж. Холдейн, Г. Шустер, А. Шилейко, Г. Щедровицкий, Э. Юдин, С. Яковлев, С. Янг и многие другие. Предметная область – раздел науки, изучающий предметные аспекты системных процессов и системные аспекты предметных процессов и явлений. Это определение можно считать системным определением предметной области.

Системный анализ – совокупность понятий, методов, процедур и технологий для изучения, описания, реализации явлений и процессов различной природы и характера, междисциплинарных проблем; это совокупность общих законов, методов, приемов исследования таких систем. Системный анализ – методология исследования сложных, часто не вполне определенных проблем теории и практики. Строго говоря, различают три ветви науки, изучающей системы:

  • системологию (теорию систем) которая изучает теоретические аспекты и использует теоретические методы (теория информации, теория вероятностей, теория игр и др.);
  • системный анализ (методологию, теорию и практику исследования систем), которая исследует методологические, а часто и практические аспекты и использует практические методы (математическая статистика, исследование операций, программирование и др.);
  • системотехнику (практику и технологию проектирования и исследования систем).

Общим у всех этих ветвей является системный подход, системный принцип исследования – рассмотрение изучаемой совокупности не как простой суммы составляющих (линейно взаимодействующих объектов), а как совокупности нелинейных и многоуровневых взаимодействующих объектов. Любую предметную область также можно определить как системную.

Пример. Информатика – наука, изучающая информационно-логические и алгоритмические аспекты системных процессов, системные аспекты информационных процессов. Это определение можно считать системным определением информатики.

Системный анализ тесно связан с синергетикой. Синергетика – междисциплинарная наука, исследующая общие идеи, методы и закономерности организации (изменения структуры, ее пространственно-временного усложнения) различных объектов и процессов, инварианты (неизменные сущности) этих процессов. «Синергический» в переводе означает «совместный, согласованно действующий». Это теория возникновения новых качественных свойств, структур на макроскопическом уровне.

Системный анализ тесно связан и с философией. Философия дает общие методы содержательного анализа, а системный анализ – общие методы формального, межпредметного анализа предметных областей, выявления и описания, изучения их системных инвариантов. Можно дать и философское определение системного анализа: системный анализ – это прикладная диалектика.

Системный анализ предоставляет к использованию в различных науках, системах следующие системные методы и процедуры:

  • абстрагирование и конкретизация;
  • анализ и синтез, индукция и дедукция;
  • формализация и конкретизация;
  • композиция и декомпозиция;
  • линеаризация и выделение нелинейных составляющих;
  • структурирование и реструктурирование;
  • макетирование;
  • реинжиниринг;
  • алгоритмизация;
  • моделирование и эксперимент;
  • программное управление и регулирование;
  • распознавание и идентификация;
  • кластеризация и классификация;
  • экспертное оценивание и тестирование;
  • верификация
  • и другие методы и процедуры.

Имеются следующие основные типы ресурсов в природе и в обществе.

  • Вещество – наиболее хорошо изученный ресурс, который в основном представлен таблицей Д.И. Менделеева достаточно полно и пополняется не так часто. Вещество выступает как отражение постоянства материи в природе, как мера однородности материи.
  • Энергия – не полностью изученный тип ресурсов, например, мы не владеем управляемой термоядерной реакцией. Энергия выступает как отражение изменчивости материи, переходов из одного вида в другой, как мера необратимости материи.
  • Информация – мало изученный тип ресурсов. Информация выступает как отражение порядка, структурированности материи, как мера порядка, самоорганизации материи (и социума). Сейчас этим понятием мы обозначаем некоторые сообщения.
  • Человек – выступает как носитель интеллекта высшего уровня и является в экономическом, социальном, гуманитарном смысле важнейшим и уникальным ресурсом общества, рассматривается как мера разума, интеллекта и целенаправленного действия, мера социального начала, высшей формы отражения материи (сознания).
  • Организация (или организованность) выступает как форма ресурсов в социуме, группе, которая определяет его структуру, включая институты человеческого общества, его надстройки, применяется как мера упорядоченности ресурсов. Организация системы связана с наличием некоторых причинно-следственных связей в этой системе. Организация системы может иметь различные формы, например, биологическую, информационную, экологическую, экономическую, социальную, временную, пространственную, и она определяется причинно-следственными связями в материи и социуме.
  • Пространство – мера протяженности материи (события), распределения ее (его) в окружающей среде.
  • Время – мера обратимости (необратимости) материи, событий. Время неразрывно связано с изменениями действительности.

Можно говорить о различных полях, в которые «помещен» человек, - материальном, энергетическом, информационном, социальном, об их пространственных, ресурсных (материя, энергия, информация) и временных характеристиках.

Пример. Рассмотрим простую задачу – пойти утром на занятия в вуз. Эта часто решаемая студентом задача имеет все аспекты:

  • материальный, физический аспект – студенту необходимо переместить некоторую массу, например, учебников и тетрадей на нужное расстояние;
  • энергетический аспект – студенту необходимо иметь и затратить конкретное количество энергии на перемещение;
  • информационный аспект – необходима информация о маршруте движения и месторасположении вуза и ее нужно обрабатывать по пути своего движения;
  • человеческий аспект – перемещение, в частности, передвижение на автобусе невозможно без человека, например, без водителя автобуса;
  • организационный аспект – необходимы подходящие транспортные сети и маршруты, остановки и т.д.;
  • пространственный аспект – перемещение на определенное расстояние;
  • временной аспект – на данное перемещение будет затрачено время (за которое произойдут соответствующие необратимые изменения в среде, в отношениях, в связях).

Все типы ресурсов тесно связаны и сплетены. Более того, они невозможны друг без друга, актуализация одного из них ведет к актуализации другого.

Пример. При сжигании дров в печке выделяется тепловая энергия, тепловая энергия используется для приготовления пищи, пища используется для получения биологической энергии организма, биологическая энергия используется для получения информации (например, решения некоторой задачи), перемещения во времени и в пространстве. Человек и во время сна расходует свою биологическую энергию на поддержание информационных процессов в организме; более того, сон – продукт таких процессов.

Социальная организация и активность людей совершенствует информационные ресурсы, процессы в обществе, последние, в свою очередь, совершенствуют производственные отношения. Если классическое естествознание объясняет мир исходя из движения, взаимопревращений вещества и энергии, то сейчас реальный мир, объективная реальность могут быть объяснены лишь с учетом сопутствующих системных, и особенно системно-информационных и синергетических процессов.

Особый тип мышления – системный, присущий аналитику, который хочет не только понять суть процесса, явления, но и управлять им. Иногда его отождествляют с аналитическим мышлением, но это отождествление не полное. Аналитическим может быть склад ума, а системный подход есть методология, основанная на теории систем.

Предметное (предметно-ориентированное) мышление – это метод (принцип), с помощью которого можно целенаправленно (как правило, с целью изучения) выявить и актуализировать, познать причинно-следственные связи и закономерности в ряду частных и общих событий и явлений. Часто это методика и технология исследования систем.

Системное (системно-ориентированное) мышление – это метод (принцип), с помощью которого можно целенаправленно (как правило, с целью управления) выявить и актуализировать, познать причинно-следственные связи и закономерности в ряду общих и всеобщих событий и явлений. Часто это методология исследования систем.

При системном мышлении совокупность событий, явлений (которые могут состоять из различных составляющих элементов) актуализируется, исследуется как целое, как одно организованное по общим правилам событие, явление, поведение которого можно предсказать, прогнозировать (как правило) без выяснения не только поведения составляющих элементов, но и качества и количества их самих. Пока не будет понятно, как функционирует или развивается система как целое, никакие знания о ее частях не дадут полной картины этого развития.

Пример. В соответствии с принципом системного мышления общество состоит из людей (и, разумеется, из общественных институтов). Каждый человек – также система (физиологическая, например). У человека, в свою очередь, существуют присущие ему как организму системы, например, система кровообращения. Когда люди взаимодействуют с другими людьми, образуются новые системы – семья, этнос и др. Это взаимодействие может происходить на уровне общественных институтов, отдельных людей (например, социальные взаимодействия) и даже отдельных систем кровообращения (например, при прямом переливании крови).

Предметный аналитик (предметно-ориентированный или просто аналитик) – человек, профессионал, изучающий, описывающий некоторую предметную область, проблему в соответствии с принципами и методами, технологиями этой области. Это не означает «узкое» рассмотрение этой проблемы, хотя подобное часто встречается.

Системный (системно-ориентированный) аналитик – человек, профессионал высокого уровня (эксперт), изучающий, описывающий системы в соответствии с принципами системного подхода, анализа, т.е. изучающий проблему комплексно. Ему присущ особый склад ума, базирующийся на мультизнаниях, достаточно большом кругозоре и опыте, высоком уровне интуиции предвидения, умении принимать целесообразные ресурсообеспеченные решения. Его основная задача – помочь предметному аналитику принять правильное (сообразующееся с другими системами, не «ухудшающее» их) решение при решении предметных проблем, выявление и изучение критериев эффективности их решения.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1488; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.