КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Общие сведения. 1.1 Критерии устойчивости замкнутой системы
ЛАБОРАТОРНАЯ РАБОТА № 0 СОВРЕМЕННАЯ ПРИКЛАДНАЯ ТЕОРИЯ УПРАВЛЕНИЯ КОМПЕНСАЦИЯ ВОЗМУЩЕНИЙ С ПОМОЩЬЮ НЕЙРОННЫХ СЕТЕЙ
Казань 2014 Содержание
1. Общие сведения. 3 1.1 Критерии устойчивости замкнутой системы.. 5 1.2 Прямые показатели качества замкнутой системы.. 7 1.2.1 Установившаяся ошибка. 9 1.2.2 Устойчивость замкнутой системы.. 12 1.3 Методика настройки параметров регулятора. 16 2. Расчетная часть. 17 2.1 Расчет установившейся ошибки. 20 2.2 Расчет устойчивости замкнутой системы.. 20 3. Экспериментальная часть. 23 Список литературы.. 25
Цель работы: исследование возможностей нейронных сетей для аппроксимации функции, получение навыков обучения нейронных сетей. Иску́сственная нейро́нная се́ть (ИНС) — математическая модель, а также её программная или аппаратная реализация, построенная по принципу организации и функционирования биологических нейронных сетей — сетей нервных клеток живого организма. ИНС представляют собой систему соединённых и взаимодействующих между собой простых процессоров (искусственных нейронов). Схема такой нейронной сети представлена на рисунке 1. Такие процессоры обычно довольно просты (особенно в сравнении с процессорами, используемыми в персональных компьютерах). Каждый процессор подобной сети имеет дело только с сигналами, которые он периодически получает, и сигналами, которые он периодически посылает другим процессорам. И, тем не менее, будучи соединёнными в достаточно большую сеть с управляемым взаимодействием, такие локально простые процессоры вместе способны выполнять довольно сложные задачи. Рисунок 1. Схема простой нейросети. Зелёным цветом обозначены входные нейроны, голубым — скрытые нейроны, жёлтым — выходной нейрон. Нейронные сети не программируются в привычном смысле этого слова, они обучаются. Возможность обучения — одно из главных преимуществ нейронных сетей перед традиционными алгоритмами. Технически обучение заключается в нахождении коэффициентов связей (весами) между нейронами. В процессе обучения нейронная сеть способна выявлять сложные зависимости между входными данными и выходными, а также выполнять обобщение. Это значит, что в случае успешного обучения сеть сможет вернуть верный результат на основании данных, которые отсутствовали в обучающей выборке, а также неполных и/или «зашумленных», частично искаженных данных. Нейронные сети применяются для многих задач: распознавание образов и классификация, кластеризация, сжатие данных и ассоциативная память и др. Но нас будут интересовать две задачи применения нейронных сетей: 1) Прогнозирование. Способность нейронной сети к прогнозированию напрямую следует из её способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и (или) каких-то существующих в настоящий момент факторов. 2) Аппроксимация. Нейронные сети могут аппроксимировать непрерывные функции. Доказана обобщённая аппроксимационная теорема: с помощью линейных операций и каскадного соединения можно из произвольного нелинейного элемента получить устройство, вычисляющее любую непрерывную функцию с некоторой наперёд заданной точностью. Это означает, что нелинейная характеристика нейрона может быть произвольной: от сигмоидальной до синуса или многочлена. От выбора нелинейной функции может зависеть сложность конкретной сети, но с любой нелинейностью сеть остаётся универсальным аппроксиматором и при правильном выборе структуры может достаточно точно аппроксимировать любую непрерывную функцию. Нейронные сети успешно применяются и для синтеза систем управления динамическими объектами. Нейросети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных, способностью адаптироваться к изменению свойств объекта управления и внешней среды, пригодностью для синтеза нелинейных регуляторов, высокой устойчивостью к повреждениям своих элементов в силу изначально заложенного в нейросетевую архитектуру параллелизма.
Дата добавления: 2015-06-04; Просмотров: 304; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |