Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Гидродинамические расчеты фильтрации аномальных нефтей




Схематизация плоско-радиальной фильтрации аномальной нефти.

Гидродинамические расчеты фильтрации аномальных нефтей в пористой среде.

 

В основу постановки задачи плоско-радиальной фильтрации аномальной нефти заложены данные о характере изменения вязкости нефти и скорости фильтрации в зависимости от градиента давления.

Результаты экспериментальных исследований фильтрации аномальных нефтей в пористой среде можно обработать двумя способами. По первому способу все изменения реологических свойств нефти учитываются вязкостью нефти, а коэффициент проницаемости считается постоянной величиной. В этом случае, очевидно, мы получаем несколько искаженную функцию изменения вязкости в зависимости от градиента давления, так как с увеличением градиента давления должен расти и коэффициент проницаемости породы. По второму способу по экспериментальным данным определяют коэффициент подвижности аномальной нефти при различных градиентах давления. Такой подход является методически более правильным, так как по мере увеличения градиента давления в пористой среде происходит с одной стороны уменьшение вязкости, с другой – увеличение коэффициента проницаемости пласта. Путем обработки экспериментальных данных в каждом случае можно получить эмпирическую формулу, связывающую подвижность аномальной нефти с градиентом пластового давления.

Формулы для расчета вязкости и подвижности аномальных нефтей имеют вид:

а) для эффективности вязкости нефти

(34)

б) для подвижности нефти при фильтрации в пласте

(35)

Где Кн – коэффициент проницаемости породы при больших градиентах давления;

µm, µ0 – наименьшее и наибольшее значения вязкости нефти;

с и уп – константы;

∆μ = μ0 – μm; у = grad р.

Следует отметить, что непосредственное использование функции (34) и (35) для решения задач сталкивается с математическими трудностями. В связи с этим необходимо для решения задачи использовать схематизацию притока аномальной нефти в круговом пласте.

Из рис.7 видно, что гладкие кривые изменения вязкости аномальной нефти могут быть заменены ломанными а, б, с с достаточной для практических расчетов точностью. В соответствии с такой схематизацией зависимостей в круговом пласте (рис.8) можно выделить три зоны. В первой зоне с внешним радиусом rm, расположенной вокруг скважины, градиент пластового давления всюду больше градиента давления предельного разрушения структуры в нефти. Нефть здесь движется с полностью разрушенной структурой и наименьшей постоянной вязкостью μm или же наибольшей подвижностью . Величина радиуса первой зоны определяется значениями реологических характеристик нефти и режимом работы скважины.

Рис.7. К аппроксимации зависимости эффективной вязкости аномальной нефти от градиента давления.

 

Рис.8. Схематизация фильтрации аномальной нефти в круговом пласте.

 

Во второй зоне вязкость или подвижность нефти в зависимости от градиента пластового давления изменяется по линейному закону. Внешний радиус второй зоны rg зависит от тех же параметров, что и первой. Здесь главную роль играет градиент динамического давления сдвига.

В третьей зоне фильтрация происходит при наибольшей постоянной вязкости μ0 или подвижности . По мере увеличения дебита скважины внешние границы первой и второй оси перемещаются к контуру питания.

При сравнительно больших дебитах или соответствующих сочетаниях реологических характеристик в пласте могут существовать только две зоны: первая и вторая (рис.8).

 

 

 

Рассматривается установившаяся фильтрация аномальной нефти в однородном круговом пласте мощностью h, проницаемостью К. Радиус контура питания обозначен через Rк, а радиус скважины – через rс. На контуре питания поддерживается давление, равное Рк, а на забое скважины – Рс. В соответствии со схематизацией фильтрации, приведенной выше, круговой пласт делится на три зоны с внешними радиусами соответственно rm, rg и Rк. Давления на границе первой и второй зоны обозначены через Рm, а на границе второй и третьей зон – Рg.

В первой зоне вязкость нефти равна μm, в третьей – μ0, а во второй зоне изменяется в зависимости от градиента по закону

(36)

где р, r – соответственно переменное давление и координата точки, в которой определено давление.

Внешние границы первой и второй зон при известных значениях μm, μ0, Н, Нк, К зависят от дебита Q и определяются по формулам

(37)

(38)

Как видно из приведенной формулы (37), значение радиуса первой зоны прямо пропорционально вязкости нефти μm, удельному дебиту скважины (Q/h) и обратно пропорционально произведению коэффициента проницаемости на градиент давления предельного разрушения структуры в нефти. При прочих равных условиях, чем больше вязкость нефти, тем дальше от скважины располагается зона проявления аномальных свойств нефти. В низкопроницаемых пластах радиус первой зоны больше, чем в высокопроницаемых. Однако следует отметить, что с уменьшением проницаемости существенно возрастают граничные градиенты давления. Аналогично изменяется и радиус второй зоны в зависимости от параметров, входящих в формулу (38).

При проведении расчетов по формулам (37) и (38) следует придерживаться следующих размерностей величин: μm и μ0, сП; Q, см3/с; К, Д; Н и Нm, кгс/(см2∙м); h, см. Выпишем формулы для расхода жидкости через параметры всех трех зон:

1-ая зона (39)

2-ая зона (40)

3-я зона (41)

 

Из условия неразрывности потока получим равенство

Q1 = Q2 = Q3 = Q (42)

 

Подставив значения расходов, после некоторых упрощений имеем

(43)

Постоянное ψ определяется по формуле

(44)

Для получения зависимости дебита скважины от депрессии на пласт воспользуемся следующим очевидным равенством

(45)

Второе слагаемое равенства (45) вычисляется по формуле

(46)

Значение давления в любой точке во второй зоне кругового пласта вычисляется по зависимости

(47)

В равенствах (46) и (47) для удобства записей введены следующие дополнительные обозначения: ∆ Н = Нm – Н; ∆μ = μ0 – μm.

Значение давления в первой и третьей зонах вычисляется по формуле Дюпюи подстановкой в нее параметров соответствующих зон.

Давления на границах зон определяются из формул

(48)

Подставляя (48) в равенство (45), получим формулу для расчета дебита скважины в виде

(49)

В полученной формуле (49) для расчета дебита скважины, работающей в круговом пласте, внешние радиусы зон rm и rg зависят от дебита скважины. Поэтому при расчетах необходимо задаваться дебитом и находить разность пластового и забойного давлений. Для решения практических задач эксплуатации скважин следует построить график зависимости Q от Ркс. Тогда, имея такой график, представляется возможным находить любой из параметров Q, Рк, Рс, характеризующих режим работы скважины.

Пример расчета:

Исходные данные: µ0 = 200 сП; μm = 30 сП; Н = 0,0002 кгс/см2∙см;

Нm = 0,0008 кгс/см2∙см; К = 0,2 Д; Rк = 20000 см; rс = 10 см.

Расчет ведется по формуле (49).

1. Вычисляем значения комплекса постоянных для расчета

2. Определяем значение постоянного перед логарифмом третьего слагаемого знаменателя формулы (49)

3. Определяем значения параметра

4. Задаемся удельным дебитом скважины

5. Находим значение параметра

 

 

6. Вычисляем значения радиусов зон

rm = 30000∙(Q/h) = 30000∙0,025 = 750 см;

rg = 79620∙0,025 = 19905 см;

7. Находим значения первого и второго слагаемых знаменателя

8. Вычисляем значение выражения под логарифмом третьего слагаемого. Прологарифмируем и умножим на N:

9. Подставляя полученные значения слагаемых и решая равенство относительно (Ркс), находим

Ркс = 9,66 кгс/см2

Для получения полного графика зависимости Q = ƒ(Ркс) необходимо задаваться несколькими значениями удельных дебитов скважины до тех пор, пока не достигнет граница первой зоны контура питания. В дальнейшем задачи решаются с использованием полученного графика.

Как было отмечено выше, одновременное существование всех трех характерных зон в пласте возможно только при соответствующих сочетаниях параметров или при очень малых расходах нефти. Поэтому, если потребуется график изменения дебита в широком интервале изменения депрессии на пласт, то одной формулы (49) недостаточно, а нужно иметь еще одну расчетную формулу, полученную из условия существования двух зон – первой и второй.

При пуске скважины существуют все три зоны, и в течение некоторог времени внешние границы зон перемещаются к контуру питания до тех пор, пока процесс фильтрации не станет стационарным.

Если дебит скважины значительный, то граница второй зоны достигает контура питания. В результате этого вся область дренажа будет разделена на две зоны.

Расчетную формулу для дебита скважины в случае «двухзонной» фильтрации можно получить путем аналогичных рассуждений.

(50)

Формулы для расчета распределения давления в пласте, дебита скважины, забойного и контурного давления для случая при необходимости можно получить, используя приведенную выше схему решения задачи.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 988; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.