Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Порядок выполнения работы. Теория изучаемого явления




Теория изучаемого явления

Основные теоретические положения и все необходимые для выполнения лабора­торной работы теоретические выкладки обобщены в следующих учебниках:

[1] на стр. 426, 445 и 464…465.

[14] на стр. 250…255, 268…269, 351 и 374; [15] на стр. 33…34.

 

Контрольные вопросы

1. Предмет и метод геометрической оптики.

2. Распространение света в однородной среде. Параметры и характеристики свето­вого пучка.

3. Закон первой степени косинуса.

4. Закон Кеплера.

5. Закон четвертой степени косинуса.

6. Определите линейную, угловую и числовую апертуру применительно к измери­телю мощности излучения.

7. На каких положениях геометрической оптики базируется астрономический па­радокс Ольберса: «Если бы звезды в масштабах вселенной были распределены равномерно, то небо ночью выглядело бы для нас сплошь светящимся».

8. В каком случае Солнце можно полагать точечным источником света, а в каком – протяженным?

9. Чем отличаются понятия светимости, интенсивности и освещенности?

10. Покажите аналитически как надо изменить динамический диапазон используе­мого в работе измерителя мощности излучения, если измерения проводить на базе (от прожектора до экрана), вдвое, втрое, … большей?

 

1. Включить источник света 1. При необходимости провести с помощью преподава­теля юстировку оптической схемы. По окончании юстировки положение всех, кроме упоми­нае­мых ниже особо, оптических элементов схемы должно оставаться постоянным до окон­чания измерений: разъюстировка хотя бы одного элемента даже на завершающей стадии ра­боты может привести к необходимости проводить все измерения заново. Особенно отметим такую ситуацию, когда факт разъюстировки ни «на глаз» ни «по показаниям» незаметен, а проявля­ется лишь при обработке результатов.

2. Включить измеритель мощности излучения 3.

3. Установить измеритель на минимальном расстоянии от ис­точника света и зафик­сировать его точно напротив окна в рассеивателе 2. Снять значение мощности излучения на входном окне измерителя. Результат занести в протокол измерений.

4. Отодвинуть измеритель мощности на 10 мм от источника и снова снять показания. Результаты занести в протокол.

5. Повторять п. 4 до тех пор, пока не будет измерена засветка с максимального рас­стояния от источника света.

6. Построить в программном пакете Harvard Graphics кривую зависимости мощности засветки от удаления источника света.

7. Аппроксимировать полученную кривую наиболее подходящей функцией.

8. Найти отклонения экспериментальных данных от аппроксимирующей кривой. Пользуясь статистикой по выбранным преподавателем десяти результатам, оценить по­грешность косвенного измерения мощности излучения с использованием формулы, най­денной в п. 7 (недостающие данные также получить у преподавателя).

9. Установить стойку 4 с измерителем мощности излучения на согласованном с пре­подавателем расстоянии от источника света. Поставить измеритель в горизонтальное поло­жение и зафиксировать его точно напротив окна в рассеивателе. Снять значения мощности излучения на входном окне измерителя и угла его наклона к оптической оси. Результаты за­нести в протокол.

10. Ослабить фиксатор и, наклоняя измеритель, поставить его под углом к оптичес­кой оси, на 5° большим. Зафиксировать это положение, снять показания и результаты за­нести в протокол.

11. Повторять п. 10 до тех пор, пока угол наклона не превысит 90°.

12. Построить в программном пакете Harvard Graphics кривую зависимости мощно­сти засветки от угла наклона измерителя к оптической оси.

13. Аппроксимировать полученную кривую наиболее подходящей функцией.

14. Проанализировав ход кривой, найти угловую апертуру встроенного в измеритель приемника излучения (по уровню мощности, указанному преподавателем).

15. Снова поставить измеритель в горизонтальное положение и зафиксировать его точно напротив окна в рассеивателе. Снять значения мощности излучения на входном окне измерителя и его смеще­ния относительно оптической оси. Результаты занести в протокол.

16. Ослабить фиксатор и, опуская измеритель, поставить его на 5 мм ниже оптичес­кой оси. Зафиксировать это положение, снять показания и результаты занести в протокол.

17. Повторять п. 16 до тех пор, пока такое смещение ещё возможно.

18. Построить в программном пакете Harvard Graphics кривую зависимости мощно­сти засветки от вертикального угла, образуемого направлением света, падающего на вход­ное окно измерителя, с горизонталью (угла смещения).

19. Аппроксимировать полученную кривую наиболее подходящей функцией.

20. Выключить измеритель мощности излучения.

21. Выключить источник света.

Содержание отчета

Отчет по лабораторной работе должен содержать следующие материалы:

1. Титульный лист (см. Приложение А).

2. Цель и задачу работы.

3. Краткое изложение теории распространения света (как правило, в том объеме, в котором это необходимо для уверенного ответа на контрольные вопросы).

4. Оптическую схему лабораторной установки с расшифровкой ее элементов.

5. Протокол измерений, подписанный преподавателем еще при выполнении лабо­раторной работы и содержащий:

- таблицу с результатами измерения мощности излучения на каждом удалении измерителя от источника света,

- таблицу с результатами измерения мощности излучения при каждом угле наклона изме­рителя к оптической оси,

- таблицу с результатами измерения мощности излучения при каждом угле смещения из­мерителя относительно оптической оси,

- экспериментальный график зависимости мощности засветки от удаления измерителя,

- экспериментальный график зависимости мощности засветки от угла наклона,

- экспериментальный график зависимости мощности засветки от угла смещения.

6. Формулы аппроксимирующих функций и выкладки, к этим формулам приводя­щие.

7. Теоретические кривые:

- зависимости мощности засветки от удаления измери­теля (можно на 1-м графике п. 5),

- зависимости мощности засветки от угла наклона (можно на 2-м графике п. 5),

- зависимости мощности засветки от угла смещения (можно на 3-м графике п. 5).

8. Подробные выкладки с результатами вычисления угловой апертуры приемника.

9. Подробные выкладки с результатами оценки инструментальной погрешности определения угловой апертуры.

10. Выводы по результатам проведенного исследования, включая собственные со­ображения по поводу причин:

- рассогласования экспериментальных и теоретических кривых;

- возникновения погрешности измерения угловой апертуры.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 405; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.