КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Реактор бн-600
БН-600 - реактор на быстрых нейтронах с электрической мощностью 600 МВт. Корпусной реактор - размножитель с интегральной компоновкой оборудования. Тепловая схема блока трехконтурная: в первом и втором контурах теплоносителем является натрий, в третьем - вода и пар. Отвод тепла от активной зоны осуществляется тремя независимыми петлями циркуляции, каждая из которых состоит из главного циркуляционного насоса 1 контура, двух промежуточных теплообменников, главного циркуляционного насоса 2 контура с буферной емкостью на всасе и с баком аварийного сброса давления, парогенератора ПГН-200М, конденсационной турбины К-210-130 со стандартной тепловой схемой и генератора ТГВ-200-2 МУЗ. Использование натриевого теплоносителя обусловило применение ряда таких специальных систем, как: электрообогрев оборудования и трубопроводов, электромагнитных насосов, фильтр-ловушек очистки натрия, диагностики протечек воды в натрий, локализации продуктов взаимодействия натрия с водой при межконтурных неплотностях парогенератора, пожаротушения натрия, отмывки оборудования и ТВС от натрия, инертного защитного газа аргона. · Тепловая схема энергоблока · Конструкция реактора БН-600 · Первый контур · Второй контур · Третий контур · Система управления и защиты (СУЗ) реактора · Система перегрузки топлива · Система очистки натрия · Система пожаротушения натрия · Выдача электрической мощности · Картограмма загрузки реактора · ТВС и твэлы активной зоны · Безопасность реакторной установки · Опыт эксплуатации энергоблока
Ядерный реактор БН-600 выполнен с "интегральной" компоновкой оборудования, при которой активная зона и оборудование первого контура (главные циркуляционные насосы и промежуточные теплообменники) размещены в корпусе реактора. Корпус реактора представляет собой бак цилиндрической формы с эллиптическим днищем и конической верхней крышкой, выполненной с одиннадцатью горловинами - для поворотной пробки, насосов первого контура, промежуточных теплообменников, элеваторов системы перегрузки тепловыделяющих сборок(ТВС). Цилиндрическая часть корпуса соединена с днищем путем сварки через переходное опорное кольцо, на котором установлен опорный пояс, являющийся основой несущей конструкции внутри корпуса реактора; он образует системой радиальных ребер три сливные камеры для натрия, выходящего из теплообменников. На опорном поясе смонтировано все внутрикорпусное оборудование напорная камера с ТВС активной зоны, зоны воспроизводства и внутреннего хранилища ТВС, первичная радиационная защита, промежуточные теплообменники, главные циркуляционные насосы первого контура. Нагрузка от массы реактора через опорное кольцо передается на катковые опоры, которые опираются на фундаментную плиту. В центре верхней части реактора смонтировано поворотное устройство, состоящее из большой и малой поворотной пробок, эксцентрических друг относительно друга; на малой поворотной пробке смонтирована колонна СУЗ, в которой расположены исполнительные механизмы систем: управления и защиты, перегрузки ТВС, внутриреакторного контроля. Реактор размещен в бетонной шахте диаметром 15 м. Конструкционный материал реактора - нержавеющая сталь марки Х18Н9 В центре верхней части реактора смонтировано поворотное устройство, состоящее из большой и малой поворотных пробок, эксцентричных друг относительно друга, на малой поворотной пробке смонтирована колонна СУЗ, несущая исполнительные механизмы систем управления и защиты, перегрузки ТВС, контроля активной зоны. Для компенсации температурных удлинений насосов первого контура и промежуточных теплообменников относительно корпуса реактора использованы компенсаторы приваренные к горловине корпуса реактора Корпус реактора заключен в страховочный кожух, исключающий возможность вытекания натрия из реактора даже при разрывах его корпуса. Активная зона и зона воспроизводства собираются из шестигранных ТВС кассетного типа с размерами "под ключ" 96 мм. Тепловыделяющая сборка состоит из твэлов, кожуха, головки для захвата ТВС при перегрузках и хвостовика, с помощью которого ТВС устанавливается в гнездо напорного коллектора и поддерживается вертикально. В хвостовике ТВС и в напорном коллекторе выполнены дроссельные устройства, обеспечивающие требуемое распределение расхода теплоносителя через ТВС, в соответствии с тепловыделением в них. Твэлы соединены между собой элементами крепления и ограждены чехлом, связывающим в единое целое все части ТВС. Твэлы заполнены по длине активной зоны втулками из обогащенной окиси урана (или смеси окиси урана) и окиси плутония, а выше и ниже активной зоны расположены торцевые экраны из брикетов окиси"отвального" урана. Твэлы зоны воспроизводства заполнены брикетами из "отвального" урана. Газовые полости над уровнем натрия в реакторе заполнены аргоном.
Первый контур включает в себя три параллельные петли, каждая из которых состоит из главного циркуляционного насоса и двух промежуточных теплообменников.Натрий от насосов поступает в напорную камеру реактора, откуда через систему напорных коллекторов распределяется по ТВС активной зоны и зоны воспроизводства а также подается на охлаждение корпуса реактора внутреннего хранилища и первичной радиационной защиты. Нагретый до 550?С в активной зоне реактора натрий поступает через кольцевой зазор радиационной защиты в промежуточные теплообменники каждой петли, где подогревает натрий второго контура до 520?С и охладившись возвращается на вход насосов.
Главный циркуляционный насос первого контура - центробежный погружного типа, с нижним гидростатическим подшипником работающим на натрии и с плавным регулированием числа оборотов вала электроприводом (по схеме асинхронно-вентильного каскада). Рабочее колесо насоса - двухстороннего всасывания. Для произведения ремонта насоса конструкция предусматривает возможность извлечения его выемной части из бака и замены без разгерметизации газовой полости реактора. Промежуточный теплообменник "натрий-натрий' - вертикальный кожухотрубный с коаксиальным подводом и отводом теплоносителя второго контура противоточный. Высокорадиоактивный натрий первого контура проходит в межтрубном пространстве теплообменника сверху вниз; нерадиоактивный натрий второго контура поступает в теплообменник по центральной трубе в нижнюю камеру и затем движется внутри трубок противоточно натрию первого контура. Для исключения возможности протечек радиоактивного натрия первого контура, в случае течи внутри теплообменника, натрий второго контура находится под большим давлением, чем натрий первого контура.
Второй контур включает в себя также три параллельные петли. Главным циркуляционным насосом второго контура каждой петли натрий подается в промежуточный теплообменник, где нагревается за счет тепла первого контура до 520?С и направляется в парогенератор, в котором генерирует и перегревает пар третьего контура. Для поддержания натрия в расплавленном состоянии при остановке блока предусмотрена разветвленная система электрообогрева всех трубопроводов и образования второго контура с устройствами контроля и автоматического регулирования температуры. Главный циркуляционный насос второго контура - центробежный, вертикальный с нижним гидростатическим подшипником. Рабочее колесо - одностороннего всасывания.
Третий контур включает в себя три петли. В состав каждой петли входит конденсационная паровая турбина К-210-130 номинальной мощностью 210 МВт со стандартной тепловой схемой. Теплоноситель- вода и пар.
Система управления и защиты (СУЗ) реактора обеспечивает измерение уровня и скорости изменения нейтронной мощности во всех диапазонах работы реактора, дистанционный контролируемый вывод реактора на заданный уровень мощности и устойчивое автоматическое поддерживание мощности на заданном уровне, автоматическое надежное прекращение цепной реакции деления при возникновении аварийного состояния в реакторе или других системах, компенсацию изменения реактивности реактора. СУЗ включает в себя 27 органов управления реактивностью, в том числе 19 стержней компенсации изменения реактивности, 2 стержня автоматического регулирования, 6 стержней аварийной защиты.
Система перегрузки топлива обеспечивает загрузку свежих ТВС и элементов СУЗ в реактор, выгрузку ТВС и элементов СУЗ из реактора, перестановку и разворот ТВС в реакторе. Комплекс механизмов и устройств системы перегрузки топлива включает в себя поворотные пробки, механизмы перегрузки, систему наведения элеваторы транспортировки ТВС и элементов СУЗ, механизм передачи сборок барабан свежих и барабан отработавших сборок, устройства управления комплексом механизмов перегрузки. Циркуляция натрия в реакторе организуется следующим образом. Натрий от главных циркуляционных насосов поступает в напорную камеру реактора, откуда через систему напорных коллекторов распределяется по составным частям активной зоны и боковой зоны воспроизводства, а также подается на охлаждение корпуса реактора, внутриреакторного хранилища и первичной радиационной защиты. Нагретый до 550?С в активной зоне реактора натрий поступает в промежуточные теплообменники каждой петли где подогревает натрий второго контура до 520?С и, охладившись, возвращается на всас главных циркуляционных насосов.
Система очистки натрия предназначена для очистки натрия от растворимых и нерастворимых примесей и индикации содержания этих примесей. Очистка осуществляется с применением холодных фильтров-ловушек.
Помещения, где возможно истечение и возгорание натрия, оборудованы системами, предусматривающими следующие способы тушения натрия: порошковым составом; в специальных поддонах с гидрорастворами; сливом натрия в аварийные емкости с самотушением натрия в них; самотушителями в относительно герметичных помещениях без подачи азота; подачей азота в помещения с натриевым оборудованием.
Выдача электрической мощности в энергосистему осуществляется через три блочных повышающих трансформатора 1575/242 кВ мощностью 250 МВА каждый и далее через типовое открытое распределительное устройство 220 кВ, выполненное с двумя основными и одной обходной системой шин.
Проектирование энергоблока с реактором БН-600 производилось исходя из условия, чтобы радиационное воздействие на персонал, население и окружающую среду при нормальной эксплуатации и проектных авариях не приводило к превышению установленных доз облучения персонала и населения и нормативов по выбросам и содержанию радиоактивных веществ в окружающей среде, а также исходя из условия ограничения этого воздействия при запроектных авариях. Общий подход, который лежит в основе технологии безопасности энергоблока с реактором БН600, заключался в применении принципа глубоко эшелонированной защиты в виде системы барьеров на пути распространения ионизирующих излучений и радиоактивных веществ в окружающую среду и реализации системы технических и организационных мер по защите и сохранению эффективности этих барьеров. Как и во всех типах реакторов на энергоблоке с реактором БН-600 в качестве первого, второго и третьего барьеров рассматриваются матрица топлива, герметичная и прочная оболочка твэл и корпус реактора Отличительной особенностью в условиях работы корпуса реактора является отсутствие каких-либо значительных повреждающих факторов он не подвергается действию высокого давления, коррозионного воздействия и большого облучения нейтронами Четвертым барьером является страховочный корпус реактора, страховочные кожухи вспомогательных трубопроводов 1 контура и герметичные помещения 1 контура. Основными решениями обеспечения защиты и сохранения эффективности барьеров являлись: · выбор благоприятной площадки с невысокой сейсмичностью в соответствии с требованиями нормативных документов; · использование и развитие внутренне присущих реактору на быстрых нейтронах свойств безопасности и его самозащиты за счет пассивных средств, отрицательных во всех режимах эффектов реактивности, низкой избыточной реактивности, отсутствия локальных критичностей, способности СУЗ обеспечивать приведение реактора в подкритическое состояние и поддержание его в этом состоянии во всех режимах, простоты в управлении реактором, интегральной компоновки реактора, высокой тепловой инерции 1 и 2 контуров и осуществимости режимов естественной циркуляции теплоносителя в них; · обеспечение требуемого качества систем, важных для безопасности, на всех этапах жизненного цикла энергоблока; · применение систем безопасности, построенных на основе принципов резервирования, независимости, единичного отказа; · применение средств диагностирования дефектов оборудования и отклонений режима их работы от нормального. Основными принципами обеспечения безопасности в ходе эксплуатации энергоблока N 3 с реактором БН-600 являются: · эксплуатация энергоблока в соответствии с нормативно-технической документацией по обоснованным эксплуатационным регламентам и инструкциям; · поддержание в исправном состоянии систем и оборудования, важных для безопасности, путем проведения на них планово-предупредительных ремонтов, технического обслуживания и замены выработавшего ресурс оборудования; · организация эффективно действующей системы документирования результатов работ и контроля; · разработка организационно-технических мероприятий, направленных на предотвращение перерастания исходных событий в проектные аварии, а проектных аварий - в запроектные, а также направленных на ограничение и ликвидацию аварий, защиту локализующих систем безопасности от разрушения при запроектных авариях; · разработка плана мероприятий по защите персонала и плана мероприятий по защите населения в случае возникновения запроектных аварий; · подготовка эксплуатационного персонала для действий в нормальных и аварийных условиях, поддержание его квалификации и дисциплины на должном уровне, формирование у персонала культуры безопасности, когда для каждого работника станции обеспечение безопасности является приоритетной целью и внутренней потребностью при выполнении работ, влияющих на безопасность. Признавая за персоналом право на ошибку, администрация станции устанавливает такой контроль за проведением таких работ, который может считаться избыточным с точки зрения производственной деятельности обычных предприятий. Пересмотр Технического обоснования безопасности БН-600 в соответствии с современными нормативными документами, разработка Программы обеспечения качества, получение Лицензии на эксплуатацию БН-600 с соответствующими Условиями и целого пакета других лицензий, регламентирующих виды деятельности - все это составляющие безопасной эксплуатации Белоярской АЭС.
С начала эксплуатации на энергоблоке БН-600 выработано более 69 млрд кВт.ч электроэнергии. При этом интегральный коэффициент использования календарного времени составил 77%, а интегральный коэффициент использования установленной мощности (КИУМ) 69%. При проектном КИУМ 80% максимальное его значение 83% было достигнуто в 1992 году. Энергоблок БН-600 по показателям работы, которые учитывает Всемирная Ассоциация Операторов АЭС (ВАО АЭС), входит в первую половину лучших АС мира. Эксплуатация энергоблока БН-600, в основном, подтвердила правильность принятых проектных решений. Вместе с тем, для повышения безопасности, надежности и эффективности работы оборудования был выполнен ряд реконструктивных работ. Прежде всего была существенно повышена надежность ядерного топлива. Проектная активная зона, состоявшая из тепловыделяющих сборок с обогащением по U235 21% и 33%, эксплуатировалась с 1980 по 1986гг. Максимальное выгорание топлива, которое удалось в ней достигнуть, составило 7% тяжелых атомов [т.а.). В течение следующих двух лет был осуществлен переход на активную зону с тремя вариантами обогащения (17%, 21% и 26% по U235) для снижения удельных тепловых нагрузок на твэл Максимальное выгорание топлива было повышено до 8,3% т.а. Следующая модернизация была осуществлена в течение 1991-1993гг. Основу ее составило применение наиболее радиационностойких и хорошо освоенных промышленностью конструкционных материалов. После этого удалось достичь выгорания топлива 10% т.а. Эта активная зона аттестована в качестве штатной. В настоящее время проводятся работы по увеличению выгорания более 11 % т.а.
За время эксплуатации накоплен большой опыт обращения с натриевым теплоносителем, использование которого потребовало решения двух сложных задач свести к минимуму вероятность течи натрия из контуров циркуляции и межконтурных течей в парогенераторах, обеспечить эффективное действие систем пожаротушения натрия в случае, если его утечка все же возникла Секционно-модульная конструкция парогенераторов показала большую эксплуатационную устойчивость при возникновении межконтурных течей. Такая конструкция позволяет при возникновении течи "вода-натрий" в любом из модулей вывести его из работы отключением секции и продолжать работу парогенератора без снижения мощности блока. Опыт работы подтвердил правильность принятой концепции парогенератора при имевших место 13 течах "вода-натрий" поте-. ря выработки электроэнергии составила всего 0,3%. Важным явилось повышение ресурса испарительных модулей с 50 до 105 тыс. часов, что позволило перейти к однократной их замене в период с 1991 по 1997 годы, вместо планировавшихся за весь срок службы энергоблока трех раз. Повышение ресурса обосновано результатами широкой программы исследований состояния испарителей и обеспечено ужесточением водно-химического режима, снижением против расчетного числа переходных и аварийных режимов, проведением периодических химических промывок. Главные циркуляционные насосы 1 контура в целом характеризует успешная работа. В начальный период имели повреждения муфты сцепления валов, что приводило к неплановым отключением петель. Повреждения вызывались совпадениями резонансных частот валов с частотами крутильных колебаний. После определения причин и отстройки частот вращения насосов от резонансов повреждения прекратились. В дальнейшем проведены модернизация валов и переход на нерегулируемый режим работы насоса при базовой нагрузке энергоблока, что полностью устранило причины повреждения насосов. Основными результатами работ по повышению надежности насосов явилось увеличение ресурса основных узлов насосов, в том числе ресурса рабочего колеса до 50 тыс. часов. На энергоблоке БН-600 проектом была предусмотрена теплофикационная установка мощностью, достаточной только для обеспечения объектов промплощадки. В результате проведенной реконструкции мощность ТФУ увеличена с 70 до 230 Гкал/час, и с 1988 года теплоснабжение города обеспечивается от энергоблока БН-600, что дает большую экономию мазута на котельных. В процессе эксплуатации на энергоблоке БН-600 был выполнен ряд мероприятий по повышению надежности оборудования, безопасности установки, а также НИОКР, в том числе наиболее значимые: · внедрение секторной системы контроля герметичности оболочек тепловыделяющих сборок; · освоение химпромывки испарительных модулей парогенератора по штатной схеме с использованием питательных насосов; · освоение режима пуска энергоблока без использования пара котельной; · реконструкция дреножей парогенераторов и трубопроводов 3 контура; · модернизация систем пожаротушения. В процессе эксплуатации энергоблока должный уровень технической безопасности поддерживается постоянным проведением профилактических мер, к которым в первую очередь относятся периодическое техническое освидетельствование оборудования и трубопроводов, контроль металла, совершенствование режимов эксплуатации, проверка работоспособности систем и оборудования, важных для безопасности, замена выработавшего ресурс оборудования. Необходимо отметить освоение технологий замены внутриреакторного оборудования главных циркуляционных насосов 1 контура, механизмов перегрузки, элеваторов. Особую сложность представлял ремонт центральной поворотной колонны с ее подъемом, заменой подшипника шарового погона, очисткой от натрия, проведенный с применением специального скафандра. Наконец, наиболее важным и сложным по технологии и требуемым средствам является комплекс работ по определению остаточного ресурса оборудования энергоблока. Проектный срок службы энергоблока установлен 30 лет и заканчивается в 2010 году. В настоящее время работа по продлению срока эксплуатации энергоблока свыше 30 лет является приоритетной. За 19-летний период эксплуатации энергоблока БН-600 была решена поставленная при его сооружении задача демонстрация длительной, эффективной и безопасной работы энергоблока с реактором на быстрых нейтронах и натриевым теплоносителем.
Дата добавления: 2015-06-04; Просмотров: 4942; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |