КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Динамика изменения ровности дорожных покрытий в зависимости от начальной ровности и грузонапряжённости
Ровность дорожных покрытий в соответствии с Техническими правилами ремонта и содержания дорог [95] рассматривается как один из основных транспортно-эксплуатационных показателей, определяющих технический уровень и эксплуатационное состояние автомобильных дорог, непосредственно влияющий на эффективность перевозок грузов и пассажиров, удобство и безопасность дорожного движения. Имеются два основных фактора, определяющих ровность дорожного покрытия и динамику её изменения в процессе эксплуатации: технология производства работ (с учётом качества производства работ и используемых материалов) при строительстве и ремонте дорожной одежды и земляного полотна, определяющие начальную ровность дорожного покрытия; воздействие движения и погодно-климатических факторов, вызывающих естественные процессы образования микротрещин и накопления остаточных деформаций в слоях дорожной одежды, проявляющихся в конечном итоге развитием сквозных трещин на дорожном покрытии (см. рис. 7.4), образованием просадок и колеи по мере снижения несущей способности дорожных конструкций и достижения предельного состояния дорожной одежды. Комплексное влияние этих факторов на ровность дорожного покрытия может учитываться эмпирическими зависимостями от прочности дорожных конструкций типа [6]: где (7.8) St и S 0 - прогнозируемое и начальное (после сдачи дороги в эксплуатацию) значения ровности дорожного покрытия по толчкомеру, см/км; а, b, с, d - эмпирические коэффициенты для дорожных одежд капитального типа: а = 0,02; b = 0,7; с = 6,7·109; d = -5,65; п - количество расчётных дней в году, п = 365 дн. N 1 - интенсивность движения в первый год службы, приведённая к расчётной нагрузке; q - показатель роста интенсивности движения во времени t; Emin - минимальный модуль упругости с заданной надёжностью при односторонней доверительной вероятности, МПа: где (7.9) - математическое ожидание модуля упругости; tн - нормированное отклонение; sЕ (t) - среднеквадратическое отклонение модуля упругости. Имеется также решение, прогнозирующее состояние покрытия по ровности в зависимости от изменения грузонапряжённости на автомобильной дороге (Слободчиков Ю.В. Обоснование оценочных показателей выбора ремонтной стратегии автомобильных дорог с дорожными одеждами нежесткого типа в изменяющихся условиях эксплуатации. - М.: Информавтодор, 1994. - 189 с): St = a· Qt + b, где (7.10) a - эмпирический параметр, учитывающий региональные условия работы дороги (Северный Казахстан). Для средних условий a = 23,5; b - параметр, характеризующий начальную ровность асфальтобетонного покрытия по толчкомеру после проведения дорожных работ (b = 90 см/км); Qt - грузонапряжённость в млн. брутто тонн за t лет эксплуатации дороги: где (7.11) Nt - среднегодовая суточная интенсивность движения в t -ом году, авт./сут; Qi - масса каждого из i -тых порожних автомобилей, т; Гi - номинальная грузоподъемность i -того автомобиля, т; g, l - коэффициенты использования пробега и грузоподъемности автомобилей соответственно; v - количество типов автомобилей в составе транспортного потока; рi - доля i -того автомобиля в составе транспортного потока. Начальная ровность покрытий в приведённых зависимостях непосредственно связана с используемой технологией и качеством проведённых работ. Более устойчивые корреляции имеют место, если динамику изменения ровности оценивать по развивающимся в покрытии остаточным деформациям и трещинам. Однако не все эти дефекты оказывают существенное влияние на состояние покрытия по ровности (рис. 7.5). Наиболее интенсивно изменение ровности покрытия происходит в местах образования сетки трещин, характеризующихся минимальными показателями прочности дорожной конструкции, где интенсивно протекают процессы повреждения кромок трещин, взаимного смещения и просадки частей покрытия при переходе системы в запредельное состояние. Рис. 7.5. Влияние различных дефектов на изменение показателя ровности асфальтобетонного покрытия (данные обследования 25-км участка дороги Москва - Ярославль; оценка ровности выполнена с помощью автомобильной установки ПКРС-2): Показательно, что ямочным ремонтом, проводимом, как правило, в местах развития сетки трещин, только частично удается улучшить состояние покрытия по ровности. Развивающиеся в покрытии сквозные поперечные и косые трещины не сказываются на динамике изменения ровности покрытия (корреляции отсутствуют). Определённое влияние замечено только с начала появления частых поперечных трещин при несвоевременном их содержании (трещины открытые с рваными кромками). В этих условиях для прогнозирования ровности покрытия по развивающейся во времени сетки трещин используется решение, полученное в результате совместного рассмотрения известной зависимости скорости движения транспортного потока от ровности асфальтобетонного покрытия, определённой в результате обобщения данных МАДИ (ГТУ) и Гипродорнии, и зависимости скорости движения от степени деформирования покрытия (Золотарь И.А., Некрасов В.К. и др. Повышение надёжности автомобильных дорог. / Под ред. И.А. Золотаря. - М.: Транспорт, 1977. - 183 с): где (7.12) di - показатель ровности покрытия по толчкомеру, см/км; m, а - эмпирические параметры, учитывающие влияние начальной ровности покрытия на скорость движения транспортного потока (m = 86,14 и а = 0,0125); h, b - эмпирические коэффициенты, влияющие соответственно на скорость движения и динамику изменения ровности покрытия в зависимости от вероятности повреждения покрытия rik (h = 0,123; b = 0,045). Вероятность повреждения покрытия rik в любой рассматриваемый год определяют с использованием распределений фактических обратимых прогибов lik нежёстких дорожных одежд, полученных по результатам полевых испытаний нагрузкой и представленных (рис. 7.6) в виде кумулятивных кривых прогибов (Апестин В.К. Оптимизационная модель для обоснования требований к прочности нежёстких дорожных одежд и норм межремонтных сроков их службы. - тр. Гипродорнии, вып. 46. - М.: 1985. - С. 57 - 73): rik = f (Xik), где (7.13) Xik - соотношение среднего и расчётного модуля упругости, обеспечивающего работоспособность дорожной одежды на рассматриваемый момент времени: (7.14) Рис. 7.6. Схема определения ежегодной вероятности повреждения покрытия rik; Ежегодные расчётные модули упругости Etpi определяют по формуле (7.1) при подстановке последовательно t = 1; 2; 3;... Т 0 лет и окончательно искомые вероятности находят по кривой накопления (см. рис. 7.6). Общий вид получаемой закономерности представлен на рис. 7.4 кривой вероятности повреждения покрытия сеткой трещин. Для технико-экономических расчётов и предварительных оценок динамики изменения ровности при отсутствии результатов диагностики используют обобщённую кривую распределения прогибов, установленную поданным многолетних наблюдений за нежёсткими дорожными одеждами разных конструкций и фактических сроков службы. Параметры этого распределения [107] приведены в табл. 7.2. По полученным значениям rik определяют соответствующее им состояние дорожного покрытия по ровности 8, по формуле (7.12) или по табл. 7.3. Таблица 7.2
Примечание. Промежуточные значения определяют по интерполяции. Таблица 7.3
Примечания: 1. Показатель ровности покрытия соответствует показаниям толчкомера ТХК-2, установленного на автомобиле УАЗ-452. При использовании других марок автомобилей требуется предварительная тарировка прибора. Промежуточные значения находят по интерполяции. 2. В случае если диагностика автомобильной дороги выполнена с помощью автомобильной установки типа ПКРС-2, соответствующее значение по ТХК определяют:
Дата добавления: 2015-06-04; Просмотров: 1241; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |