Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Каскад реакторов идеального смешения




Каскад представляет собой несколько последовательно соединенных проточных реакторов (секций) идеального смешения В единичном реакторе идеального смешения (РИС – Н) вследствие того, что концентрация реагентов мгновенно снижается до конечной величины, скорость реакции при большой степени превращения невелика, поэтому для достижения высокой степени превращения нужен реактор большого объема. Поэтому очень часто применяют ряд последовательно расположенных РИС – Н, т. е. К – РИС. Концентрация исходного реагента в такой системе снижается до конечного значения не сразу, а постепенно от реактора к реактору.

Математическая модель каскада реакторов идеального смешения, работающего в изотермическом режиме, представляет собой систему уравнений материального баланса по какому – либо участнику реакции, включающую, по меньшей мере, N уравнений по числу секций каскада.

 

 

В расчете каскада для каждой ступени используется проектное уравнение проточного непрерывно действующего реактора идеального смешения. Пронумеруем последовательно ступени каскада от 1 до N. Обозначим через Сj,i концентрацию реагента j в смеси, покидающей i - ю ступень. Если предположить, что в трубопроводах, соединяющих аппараты каскада, химическое превращение минимальное, то можно считать концентрацию реагента j в смеси на выходе из i – го реактора равной концентрации этого вещества в смеси на выходе в (i + 1) реактор.

Используя уравнение

Последовательно для расчета отдельных ступеней каскада получаем:

,

где 1, 2 i , п – среднее время пребывания реагентов в отдельных ступенях каскада.

Таким образом, образовалась система N уравнений с N неизвестными Сj,1, Cj,2, …Cj,n, поскольку скорости реакции ωj,1 = f(Cj), ωj,i = f(Cj,i) … тоже являются функциями этих концентраций. Концентрации в отдельных реакторах вычислим путем последовательного решения проектных уравнений, начиная с первой ступени каскада.

В некоторых простых случаях, например для реакции первого порядка, можно установить непосредственную зависимость между концентрациями на входе в каскад и выходе из него.

,

где Vp – реакционный объем;

i – секции;

τ – среднее время пребывания реакционной смеси в i – ой секции;

Сj,i-1 – концентрация участника реакции на входе в i – ую секцию, равная концентрации на выходе из (i – 1) секции;

Сj,i – концентрация компонента на выходе из i – ой секции.

Расчет каскада обычно сводится к определению числа секций заданного объема, необходимого для достижения заданной степени превращения, или к определению состава реакционной смеси на выходе из i – ой секции каскада. Выходные параметры для первой секции являются входными для второй, и т. д.

Рассмотрим определение концентрации реагента А на выходе из каскада, имеющего N секций равного объема V1 = V2 … VN при проведении реакции первого порядка.

Получаем систему уравнений

.

Из первого уравнения находим концентрацию реагента j, в первой ступени каскада

(1)

Концентрация реагента j во втором реакторе

, и т. д. (2)

Исключим из уравнений (1) и (2) Сj,i

.

Исключая таким же образом последующие промежуточные концентрации,

, (3)

 

если константы скорости и время пребывания равны.

Если учесть, что , то уравнение (1) можно записать

Уравнение (1) позволяет не только определить концентрацию на выходе из любого реактора каскада, но и найти число последовательно соединенных реакторов, если заданы изменения концентрации или степень превращения.

.

Аналитическое решение уравнений для определения концентраций реакций более высокого порядка очень сложно. Можно составить алгоритм решения этих уравнений для i – ой секции и последовательно применять его N раз так как уравнения материального баланса однотипны для всех секций Либо, в этом случае более предпочтителен менее точный, но более простой графический метод.

В каждом реакторе концентрация исходного реагента в объеме постоянна и равна его концентрации на выходе из реактора. Изменение концентрации исходного вещества происходит так же, как и в РИС – Н, т. е. скачком при входе реакционной смеси в реактор. Однако концентрация СА в каскаде выше, чем в единичном реакторе и при увеличении числа приближается к значению концентрации в РИВ.

Задачей расчета К – РИС является определение числа ступеней (числа реакторов), необходимых для достижения заданной степени превращения. Для определения числа ступеней каскада используют графический или алгебраический метод.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1282; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.