КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Соотношения неопределенностей Гейзенберга
Состояния классических частиц в ньютоновской механике и микрочастиц в квантовой физике описываются принципиально различными способами. В классической механике движение частицы описывается траекторией и в каждый момент времени частица имеет определенное положение и импульс. Поскольку микрочастицам присущи одновременно и корпускулярные и волновые свойства, то в квантовой физике в принципе нельзя говорить о траектории частицы, т.е. нельзя характеризовать мгновенное состояние микрочастицы точными заданиями ее положения и импульса. В соответствии с гипотезой де Бройля любой частице одновременно присущи как корпускулярные, так и волновые свойства. Нетрудно убедиться, что эти два метода описания одних и тех же физических объектов во многом исключают друг друга. Например, не имеет смысла говорить о локализации монохроматической волны в пространстве, поскольку длина волны есть характеристика синусоиды, а синусоида - бесконечная периодическая кривая. Отсюда следует, что должны существовать принципиальные пределы применимости к микрочастицам понятий, характеризующих частицу в классической механике. Заслуга в согласовании корпускулярных и волновых свойств микрообъектов принадлежит В. Гейзенбергу. Свои результаты он сформулировал в 1927 году в виде соотношений или принципа неопределенностей. Эти соотношения определяют принципиальный предел неточностей координат
В соответствии с этими соотношениями следует, что чем точнее измерено положение частицы, тем с меньшей точностью можно характеризовать ее импульс, и наоборот. В частности, неопределенности импульса может и не быть ( Проиллюстрируем на конкретных примерах, как с помощью соотношений неопределенностей Гейзенберга можно оценить пределы применимости к частицам понятий классической механики. Хорошо известно, что движение электрона в камере Вильсона, электронно-лучевой трубки осциллографа, кинескопа телевизора хорошо описывается законами ньютоновской механики. С другой стороны, тот же электрон в атоме водорода требует для описания своего состояния применения законов квантовой физики. Кажущееся противоречие легко объясняется с помощью количественных оценок в соответствии с соотношениями (1.21). Наблюдая трек электрона в камере Вильсона, можно лишь утверждать, что он прошел внутри капельки тумана, размер которой приблизительно 10-6 м. Приняв это значение за неопределенность координаты электрона
Типичные электроны, попадающие в камеру Вильсона, имеют скорости vx ~ 107 м/с. Таким образом, Для электрона в атоме водорода Оценим теперь неопределенность скорости для макроскопического тела, обладающего достаточно большой массой. Пусть это будет тело массой 1 г. Положение центра тяжести такого тела будем определять с точностью до размера атома ( т.е. для макроскопических тел неопределенность скорости настолько мала, что находится за пределами доступных способов измерений. Поэтому соотношения неопределенностей для таких тел не играют никакой роли.
Рис.1.1. Определение положения электрона с помощью экрана со щелью Соотношения неопределенностей Гейзенберга играют существенную роль в проблеме измерений в квантовой физике. Они устанавливают принципиальный предел точности измерений, который невозможно превзойти совершенствованием приборов и методов измерений. Любая попытка измерить, например, координату частицы приводит к искажению первоначального состояния частицы за счет взаимодействия ее с измерительным прибором, в результате чего появляется неопределенность в значении импульса. Простейшим экспериментальным прибором, позволяющим определить положение электрона, может служить узкая щель или отверстие, расположенные перпендикулярно направлению движения электрона (рис. 1.1). Направим ось x параллельно плоскости щели, а ось y - перпендикулярно к ней, как это показано на рисунке. Пусть импульс электрона до прохождения щели будет равен p, причем неопределенность x -составляющей импульса
a согласно условию дифракции от щели
Из последних двух равенств получаем
что согласуется с соотношениями неопределенностей Гейзенберга. В квантовой механике имеет место также соотношение неопределенностей Гейзенберга для времени и энергии:
Это соотношение означает, что чем короче время существования какого-либо состояния или время, отведенное для его наблюдения, тем с меньшей определенностью можно говорить об энергии этого состояния. Наоборот, чем больше это время, тем с большей точностью определена энергия состояния. Отсюда следует, что стационарное состояние может существовать бесконечно. Из соотношения (1.22) вытекает возможность существования виртуальных частиц, которые существуют только в состояниях, имеющих малую длительность, и не могут быть зарегистрированы. Виртуальные частицы являются переносчиками взаимодействия. Например, два электрона взаимодействуют друг с другом путем испускания одним электроном и поглощения другим виртуального фотона.
Дата добавления: 2015-06-04; Просмотров: 1350; Нарушение авторских прав?; Мы поможем в написании вашей работы! |