Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

По способу генерации пара




По конструкции

По роду замедлителя

По виду теплоносителя

По виду топлива

По размещению топлива

По спектру нейтронов

§ Реактор на тепловых (медленных) нейтронах («тепловой реактор»)

§ Реактор на быстрых нейтронах («быстрый реактор»)

§ Реактор на промежуточных нейтронах

§ Реактор со смешанным спектром

§ Гетерогенные реакторы, где топливо размещается в активной зоне дискретно в виде блоков, между которыми находится замедлитель;

§ Гомогенные реакторы, где топливо и замедлитель представляют однородную смесь (гомогенную систему).

В гетерогенном реакторе топливо и замедлитель могут быть пространственно разнесены, в частности, в полостном реакторе замедлитель-отражатель окружает полость с топливом, не содержащим замедлителя. С ядерно-физической точки зрения критерием гомогенности/гетерогенности является не конструктивное исполнение, а размещение блоков топлива на расстоянии, превышающем длину замедления нейтронов в данном замедлителе. Так, реакторы с так называемой «тесной решёткой» рассчитываются, как гомогенные, хотя в них топливо обычно отделено от замедлителя.

Блоки ядерного топлива в гетерогенном реакторе называются тепловыделяющими сборками (ТВС), которые размещаются в активной зоне в узлах правильной решётки, образуя ячейки.

§ изотопы урана 235, 238, 233 (235U, 238U, 233U)

§ изотоп плутония 239 (239Pu), также изотопы 239-242Pu в виде смеси с 238U (MOX-топливо)

§ изотоп тория 232 (232Th) (посредством преобразования в 233U)

По степени обогащения:

§ природный уран

§ слабо обогащённый уран

§ высоко обогащённый уран

По химическому составу:

§ металлический U

§ UO2 (диоксид урана)

§ UC (карбид урана) и т. д.

§ H2O (вода, см. Водо-водяной реактор)

§ Газ, (см. Графито-газовый реактор)

§ D2O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

§ Реактор с органическим теплоносителем

§ Реактор с жидкометаллическим теплоносителем

§ Реактор на расплавах солей

§ Реактор с твердым теплоносителем

§ С (графит, см. Графито-газовый реактор, Графито-водный реактор)

§ H2O (вода, см. Легководный реактор, Водо-водяной реактор, ВВЭР)

§ D2O (тяжёлая вода, см. Тяжеловодный ядерный реактор, CANDU)

§ Be, BeO

§ Гидриды металлов

§ Без замедлителя (см. Реактор на быстрых нейтронах)

§ Корпусные реакторы

§ Канальные реакторы

§ Реактор с внешним парогенератором (См. Водо-водяной реактор, ВВЭР)

§ Кипящий реактор

Классификация МАГАТЭ

§ PWR (pressurized water reactors) — водо-водяной реактор (реактор с водой под давлением);

§ BWR (boiling water reactor) — кипящий реактор;

§ FBR (fast breeder reactor) — реактор-размножитель на быстрых нейтронах;

§ GCR (gas-cooled reactor) — газоохлаждаемый реактор;

§ LWGR (light water graphite reactor) — графито-водный реактор

§ PHWR (pressurised heavy water reactor) — тяжеловодный реактор

Наиболее распространёнными в мире являются водо-водяные (около 62 %) и кипящие (20 %) реакторы.

Материалы реакторов

Материалы, из которых строят реакторы, работают при высокой температуре в поле нейтронов, γ-квантов и осколков деления. Поэтому для реакторостроения пригодны не все материалы, применяемые в других отраслях техники. При выборе реакторных материалов учитывают их радиационную стойкость, химическую инертность, сечение поглощения и другие свойства.

Материал Плотность, г/см³ Макроскопическое сечение поглощения Εм−1
тепловых нейтронов нейтронов спектра деления
Алюминий 2,7 1,3 2,5·10−3
Магний 1,74 0,14 3·10−3
Цирконий 6,4 0,76 4·10−2
Нержавеющая сталь 8,0 24,7 1·10−1

Оболочки ТВЭЛов, каналы, замедлители (отражатели) изготовляют из материалов с небольшими сечениями поглощения. Применение материалов, слабо поглощающих нейтроны, снижает непроизводительный расход нейтронов, уменьшает загрузку ядерного топлива и увеличивает коэффициент воспроизводства КВ. Для поглощающих стержней, наоборот, пригодны материалы с большим сечением поглощения. Это значительно сокращает количество стержней, необходимых для управления реактором.

Быстрые нейтроны, γ-кванты и осколки деления повреждают структуру вещества. Так, в твёрдом веществе быстрые нейтроны выбивают атомы изкристаллической решётки или сдвигают их с места. Вследствие этого ухудшаются пластические свойства и теплопроводность материалов.

Сложные молекулы под действием излучения распадаются на более простые молекулы или составные атомы. Например, вода разлагается на кислород и водород. Это явление известно под названием радиолиза воды.

Радиационная нестойкость материалов меньше сказывается при высоких температурах. Подвижность атомов становится настолько большой, что вероятность возвращения выбитых из кристаллической решётки атомов на своё место или рекомбинация водорода и кислорода в молекулу воды заметно увеличивается. Так, радиолиз воды несущественен в энергетических некипящих реакторах (например, ВВЭР), в то время как в мощных исследовательских реакторах выделяется значительное количество гремучей смеси. В реакторах есть специальные системы для ее сжигания.

Реакторные материалы контактируют между собой (оболочка ТВЭЛа с теплоносителем и ядерным топливом, тепловыделяющие кассеты — с теплоносителем и замедлителем и т. д.). Естественно, что контактирующие материалы должны быть химически инертными (совместимыми). Примером несовместимости служат уран и горячая вода, вступающие в химическую реакцию.

У большинства материалов прочностные свойства резко ухудшаются с увеличением температуры. В энергетических реакторах конструкционные материалы работают при высоких температурах. Это ограничивает выбор конструкционных материалов, особенно для тех деталей энергетического реактора, которые должны выдерживать высокое давление.

Выгорание и воспроизводство ядерного топлива

В процессе работы ядерного реактора из-за накопления в топливе осколков деления изменяется его изотопный и химический состав, происходит образование трансурановых элементов, главным образом изотопов Pu.

Влияние осколков деления на реактивность ядерного реактора называется отравлением (для радиоактивных осколков) и зашлаковыванием (для стабильных изотопов).

Основная причина отравления реактора — 135Xe, обладающий наибольшим сечением поглощения нейтронов (2,6·106 барн). Период полураспада 135Xe T 1/2 = 9,2 ч; выход при делении составляет 6—7 %.

Основная часть 135Xe образуется в результате распада 135I (T 1/2 = 6,8 ч). При отравлении Кэфизменяется на 1—3 %. Большое сечение поглощения 135Xe и наличие промежуточного изотопа 135I приводят к двум важным явлениям:

1)К увеличению концентрации 135Xe и, следовательно, к уменьшению реактивности реактора после его остановки или снижения мощности («иодная яма»), что делает невозможным кратковременные остановки и колебания выходной мощности. Данный эффект преодолевается введением запаса реактивности в органах регулирования. Глубина и продолжительность иодной ямы зависят от потока нейтронов Ф: при Ф = 5·1018 нейтрон/(см²·сек) продолжительность йодной ямы ˜ 30 ч, а глубина в 2 раза превосходит стационарное изменение Кэф, вызванное отравлением 135Xe.

2)Из-за отравления могут происходить пространственно-временные колебания нейтронного потока Ф, а, следовательно, и мощности реактора. Эти колебания возникают при Ф > 1018 нейтронов/(см²·сек) и больших размерах реактора. Периоды колебаний ˜ 10 ч.

При делении ядер возникает большое число стабильных осколков, которые различаются сечениями поглощения по сравнению с сечением поглощения делящегося изотопа. Концентрация осколков с большим значением сечения поглощения достигает насыщения в течение нескольких первых суток работы реактора. Главным образом это 149Sm, изменяющий Кэф на 1 %). Концентрация осколков с малым значением сечения поглощения и вносимая ими отрицательная реактивность возрастают линейно во времени.

Образование трансурановых элементов в ядерном реакторе происходит по следующим схемам:

1)235U + n → 236U + n → 237U →(7 сут)→ 237Np + n → 238Np →(2,1 сут)→ 238Pu

2)238U + n → 239U →(23 мин)→ 239Np →(2,3 сут)→ 239Pu (+осколки) + n → 240Pu + n → 241Pu (+осколки) + n → 242Pu + n → 243Pu →(5 ч)→ 243Am + n →244Am →(26 мин)→ 244Cm

Время между стрелками обозначает период полураспада, «+n» обозначает поглощение нейтрона.

В начале работы реактора происходит линейное накопление 239Pu, причём тем быстрее (при фиксированном выгорании 235U), чем меньше обогащение урана.

Далее концентрация 239Pu стремится к постоянной величине, которая не зависит от степени обогащения, а определяется отношением сечений захвата нейтронов 238U и 239Pu. Характерное время установления равновесной концентрации 239Pu ~ 3/Ф лет (Ф в ед. 1013 нейтронов/см²×сек). Изотопы240Pu, 241Pu достигают равновесной концентрации только при повторном сжигании горючего в ядерном реакторе после регенерации ядерного топлива.

Выгорание ядерного топлива характеризуют суммарной энергией, выделившейся в реакторе на 1 тонну топлива. Эта величина составляет:

§ ˜ 10 Гвт·сут/т — реакторы на тяжёлой воде;

§ ˜ 20-30 Гвт·сут/т — реакторы на слабообогащённом уране (2—3 % 235U);

§ до 100 Гвт·сут/т — реакторы на быстрых нейтронах.

Выгорание 1 Гвт·сут/т соответствует сгоранию 0,1 % ядерного топлива.

По мере выгорания топлива реактивность реактора уменьшается. Замена выгоревшего топлива производится сразу из всей активной зоны или постепенно, оставляя в работе ТВЭЛы разных «возрастов».

В случае полной замены топлива, реактор имеет избыточную реактивность, которую нужно компенсировать, тогда как во втором случае компенсация требуется только при первом пуске реактора. Непрерывная перегрузка позволяет повысить глубину выгорания, так как реактивность реактора определяется средними концентрациями делящихся изотопов.

Масса загруженного топлива превосходит массу выгруженного за счёт «веса» выделившейся энергии. После остановки реактора, сначала главным образом за счёт деления запаздывающими нейтронами, а затем, через 1-2 мин, за счёт β- и γ-излучения осколков деления и трансурановых элементов, в топливе продолжается выделение энергии. Если реактор работал достаточно долго до момента остановки, то через 2 мин после остановки выделение энергии составляет около 3 %, через 1 ч — 1 %, через сутки — 0,4 %, через год — 0,05 % от первоначальной мощности.

Отношение количества делящихся изотопов Pu, образовавшихся в ядерном реакторе, к количеству выгоревшего 235U называется коэффициентом конверсии KK. Величина KK увеличивается при уменьшении обогащения и выгорания. Для тяжеловодного реактора на естественном уране, при выгорании 10 ГВт·сут/т KK = 0,55, а при небольших выгораниях (в этом случае KK называется начальным плутониевым коэффициентом) KK = 0,8. Если ядерный реактор сжигает и производит одни и те же изотопы (реактор-размножитель), то отношение скорости воспроизводства к скорости выгорания называется коэффициентом воспроизводства КВ. В ядерных реакторах на тепловых нейтронах КВ < 1, а для реакторов на быстрых нейтронах КВ может достигать 1,4-1,5. Рост КВ для реакторов на быстрых нейтронах объясняется главным образом тем, что, особенно в случае 239Pu, для быстрых нейтронов g растёт, а а падает.

Управление ядерным реактором

Основная статья: Управление ядерным реактором

Управление ядерным реактором возможно только благодаря тому, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от нескольких миллисекунд до нескольких минут.

Для управления реактором используют поглощающие стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (в основном В, Cd и некоторые др.) и/или раствор борной кислоты, в определённой концентрации добавляемый в теплоноситель (борное регулирование). Движение стержней управляется специальными механизмами, приводами, работающими по сигналам от оператора или аппаратуры автоматического регулирования нейтронного потока.

На случай различных аварийных ситуаций в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону всех поглощающих стержней — система аварийной защиты.

Остаточное тепловыделение

Основная статья: Остаточное тепловыделение

Важной проблемой, непосредственно связанной с ядерной безопасностью, является остаточное тепловыделение. Это специфическая особенность ядерного топлива, заключающаяся в том, что, после прекращения цепной реакции деления и обычной для любого энергоисточника тепловой инерции, выделение тепла в реакторе продолжается ещё долгое время, что создаёт ряд технически сложных проблем.

Остаточное тепловыделение является следствием β- и γ- распада продуктов деления, которые накопились в топливе за время работы реактора. Ядрапродуктов деления вследствие распада переходят в более стабильное или полностью стабильное состояние с выделением значительной энергии.

Хотя мощность остаточного тепловыделения быстро спадает до величин, малых по сравнению со стационарными значениями, в мощных энергетических реакторах она значительна в абсолютных величинах. По этой причине остаточное тепловыделение влечёт необходимость длительное время обеспечивать теплоотвод от активной зоны реактора после его останова. Эта задача требует наличия в конструкции реакторной установки систем расхолаживания с надёжным электроснабжением, а также обуславливает необходимость длительного (в течение 3-4 лет) хранения отработавшего ядерного топлива в хранилищах со специальным температурным режимом — бассейнах выдержки, которые обычно располагаются в непосредственной близости от реактора.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 521; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.