КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поиск шаблонов
Иллюстрации Хороший способ решать задачи - рисовать к ним иллюстрации. Рисунок - даже простая схема или диаграмма - позволяет наглядно представить задачу, а значит, расширяет ваши возможности поработать над решением. Опытный логик, без сомнения, понимает важность графического комментария к задаче. С помощью карандаша и листа бумаги можно записать всю информацию, какой вы только располагаете по данной проблеме, и представить эту информацию в удобной для вас форме. Вот пример: Однажды утром, как раз в тот момент, когда взошло солнце, один буддийский монах начал восхождение на высокую гору. Узкая тропа шириной не более одного-двух футов вилась серпантином по склону горы к сверкающему храму на ее вершине. Монах шел по дорожке то быстрее, то медленнее; он часто останавливался, чтобы отдохнуть и поесть сушеных фруктов, которые взял с собой. К храму он подошел незадолго до захода солнца. После нескольких дней поста и размышлений монах пустился в обратный путь по той же тропе. Он вышел на рассвете и опять спускался с неравномерной скоростью, неоднократно отдыхая по дороге. Средняя скорость спуска, конечно, превышала среднюю скорость подъема. Докажите, что на тропе есть такая точка, которую монах во время спуска и во время подъема проходил в одно и то же время суток. Решить эту задачу очень просто, если нарисовать схему.
Путь монаха можно представить в виде графика в координатах время-высота. Когда вы наложите друг на друга обе траектории пути, вы увидите, что искомая точка действительно существует, причем только одна.
У современного скульптора есть десять одинаковых статуй. Он настаивает, чтобы у каждой из четырех стен зала находилось по три статуи. Как же их разместить? Нарисуйте, не отрывая карандаша от бумаги, следующие рисунки:
Как сложить квадратный кусок бумаги, чтобы получились стороны правильного шестиугольника?
При выполнении этой задачи нельзя использовать карандаш и линейку. Шестиугольник может располагаться в любой части квадрата.
Напомним хорошо известную историю про математика Карла Фридриха Гаусса. Когда Гаусс был школьником, ему и его одноклассникам задали задачу: найти сумму всех чисел от 1 до 100. Учитель, надеясь, что класс будет надолго занят, был немало удивлен, когда Гаусс уже через пять минут дал правильный ответ. Мальчик понял, что числа можно расположить парами, которые все в сумме будут давать сто. Например, 1+99=100, 2+98=100, 3+97=100. Поскольку всего имеется 49 таких пар, плюс 50 и 100, то сумма будет равняться 5050. Многие задачи можно решить очень легко, если найти скрытый в них шаблон. Для того чтобы найти такой шаблон, иногда необходимо отойти на некоторое расстояние и взглянуть на проблему со стороны. Посмотрите, нельзя ли найти простые пути решения для следующих задач: Сколько треугольников на этом рисунке?
Семеро мужчин и два мальчика должны пересечь реку. Единственная лодка очень мала и может перевезти либо одного мужчину, либо двух мальчиков. Сколько раз лодка должна пересечь реку, чтобы перевезти всех? Крысу обучают проходить лабиринт таким образом, чтобы при каждом шаге приближаться к сыру. Сколько возможных путей есть в этом лабиринте?
Разместите числа от 1 до 19 в 19 кружках таким образом, чтобы любые три числа, находящиеся на одной прямой, в сумме давали тридцать. Одна цифра должна быть в центре круга.
Сколькими способами можно прочитать слово “радар” на приведенном ниже рисунке? Можно двигаться в любом направлении.
Дата добавления: 2015-06-04; Просмотров: 402; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |