Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Стек коммуникационных протоколов TCP/IP




Семинар.

Мы будем Вам очень благодарны! Спасибо!

Если Вам понравился данный материал, пожалуйста, поделитесь им с друзьями.

Сетевые протоколы управляют сетевым оборудованием, обеспечивают обмен информацией между подключенными устройствами. Чтобы сетевые компьютеры могли сообщаться, они должны использовать один и тот же протокол. Стандартизация в области коммуникационных протоколов является важной задачей, так как она лежит в основе принципа работы всего сетевого оборудования определенной технологии.

Протоколы локальных сетей должны обладать следующими основными характеристиками:

· обеспечивать надежность сетевых каналов;

· обладать высоким быстродействием;

· обрабатывать исходные и целевые адреса узлов;

· соответствовать сетевым стандартам

Наиболее популярными являются стеки: TCP/IP, IPX/SPX, NetBEUI. Эти стеки на нижних уровнях – физическом и канальном модели OSI – используют одни и те же протоколы Ethernet, Token Ring, FDDI и др. На верхних уровнях все стеки работают по своим собственным протоколам. Эти протоколы, не соответствуют уровням модели OSI, так как она появилась уже как результат обобщения уже существующих и реально используемых стеков.

NetBEUI - самый простой из перечисленных стеков протоколов. Он является самым быстродействующим, однако его функциональные возможности ограничены. В этом протоколе отсутствуют средства логической адресации на сетевом уровне, поэтому его целесообразно использовать в локальной сети, но нельзя маршрутизировать из одной сети в другую. Реализация этой функции возможно только совместно с маршрутизируемым протоколом, например с TCP/IP.

Протоколы IPX и SPX совместно обеспечивают маршрутизацию сетевых сообщений. Компания Novell разработала протокол IPX /SPX для серверов и клиентов NetWare, однако его можно использовать и в других операционных системах. Протокол IPX работает на сетевом уровне модели OSI, относится к категории протоколов, работающих без установления соединения. Протокол SPX работает на транспортном уровне модели OSI, он обеспечивает распознавание и сборку пакетов и другие службы с установлением соединения. IPX доставляет пакеты по назначению, а SPX следит за тем, чтобы пакеты прибыли полностью и в целостном состоянии, он поддерживает нумерацию пакетов, отслеживает количество переданных пакетов.

Самым распространенным является стандартный стек TCP/IP. Практически все сети передают основную часть своего трафика с его помощью, в том числе и глобальная сеть Интернет. Этот стек также является основой для создания корпоративных intranet-сетей, использующих гипертекстовую технологию WWW. Все современные операционные системы поддерживают протоколы TCP/IP.

TCP/IP – это многоуровневый стек, он сдержит около ста стандартизированных протоколов, обеспечивающих эффективную передачу данных. Так как стек был разработан до появления модели взаимодействия открытых систем OSI, то соответствие уровней протоколов TCP/IP модели OSI достаточно условно. Базовыми протоколами являются следующие:

· Transmission Control Protocol (TCP);

· User Datagram Protocol (UDP);

· Internet Protocol (IP).

Каждый коммуникационный протокол оперирует некоторой порцией передаваемых данных - блоком данных. В протоколе TCP принято называть блоки кадрами, в UDP – датаграммами, в IP – пакетами. Часто пакет называют также датаграммой, характеризуя таким образом блок данных, содержащий маршрутную информацию. Датаграммами оперируют протоколы без установления соединений, такие как IP и UDP. Потоком называют данные, поступающие от приложений на транспортный уровень TCP или UDP. Протокол TCP разбивает поступающий файл на пакеты.

Структура протоколов TCP/IP приведена на рис. 13. Протоколы TCP/IP делятся на 4 уровня.

Самый нижний (уровень IV) соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все стандарты физического и канального уровня: для локальных сетей это Ethernet, Token Ring, FDDI, Fast Ethernet, 100VG-AnyLAN, для глобальных сетей - протоколы соединений «точка-точка» SLIP и PPP, протоколы территориальных сетей с коммутацией пакетов X.25, frame relay. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Рис. 13. Структура стека протоколов TCP/IP.

Уровень III - это уровень межсетевого взаимодействия, который занимается передачей пакетов с использованием различных транспортных протоколов локальных и глобальных сетей. В качестве основного протокола сетевого уровня в стеке используется протокол IP, с помощью которого решаются задачи межсетевой адресации и маршрутизации пакетов. IP является протоколом без установления соединением, т.е. доставка пакетов до узла назначения не гарантируется. Это и не входит в его задачу.

Протокол IP реализует следующие базовые функции: передача данных, адресация, маршрутизация и динамическая фрагментация пакетов. Для правильной доставки пакета используется специальная система адресации. Передающий и принимающий компьютеры в сети идентифицируются с помощью логических IP-адресов. Адресная информация пакета позволяет определять маршрут движения. Протокол может передавать пакеты в сетях разных типов, которые используют пакеты разной длины. Например, пакет Ethernet может иметь длину от 64 до 1526 байтов, а пакет FDDI – до 4472 байтов. Полная длина IP-пакета может достигать 65535 байтов. Пакет содержит заголовок и данные. Заголовок IP-пакета содержит ряд полей. Среди них следующие: адреса источника и приемника, общая длина пакета в байтах, включающая заголовок и данные, транспортный протокол (TCP или UDP), время жизни, которое задается во избежания непрерывной циркуляции в некоторой сети. По истечении указанного времени пакет уничтожается.

Маршрутизация представляет собой процесс перемещения информации по объединенной сети от источника к приемнику. Маршрут следования, как правило, содержит промежуточные пункты передачи. При маршрутизации определяется оптимальный маршрут и осуществляется транспортировка (коммутация) пакетов. Для определения наилучшего маршрута используется множество различных метрик: длина маршрута, полоса пропускания, нагрузка, надежность, задержка, затраты на передачу. Чтобы упростить процесс определения маршрута, на каждом маршрутизаторе создаются и регулярно обновляются таблицы маршрутизации, в которых содержится информация о возможных маршрутах от рассматриваемого маршрутизатора до следующего пункта. Для выбора оптимального пути сравниваются метрики маршрутизаторов. Маршрутизаторы взаимодействуют между собой и ведут таблицы маршрутизации, обмениваясь сообщениями, в том числе и об обновлении маршрута. Анализ данных позволяет составить представление о топологии сети и состоянии каналов связи, что используется для построения маршрутов к устройствам-приемникам.

К уровню межсетевого взаимодействия относятся протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации о продвижении пакетов RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol) и протокол разрешения адреса узла сети ARP (Address Resolution Protocol).

Протокол RIP основан на наборе алгоритмов, использующих понятие вектора расстояний для сравнения маршрутов и выбора наилучшего из них до места назначения. RIP посылает сообщения по сети об обновлении маршрутов и изменении топологии сети. Вектора расстояний итерационно распространяются маршрутизаторами по сети, и через несколько шагов каждый маршрутизатор имеет данные о достижимых для него сетях и о расстояниях до них. Если связь с какой-либо сетью обрывается, то маршрутизатор присваивает соответствующему элементу вектора значение, которое имеет смысл - "связи нет".

Протокол OSPF вычисляет маршруты в IP-сетях, сохраняя при этом другие протоколы обмена маршрутной информацией.

Протокол ICMP предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом - источником пакета. ICMP генерирует сообщения о невозможности доставки пакета, об истечении лимита времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Протокол ARP, как указывалось выше, используется для определения локального адреса по IP-адресу. Протокол, решающий обратную задачу - нахождение IP-адреса по известному локальному адресу-, реверсивный ARP – RARP, используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера. В локальных сетях протокол ARP использует широковещательные кадры протокола канального уровня для поиска в сети узла с заданным IP-адресом. Узел, которому нужно выполнить отображение IP-адреса на локальный адрес, формирует ARP запрос, вкладывает его в кадр протокола канального уровня, указывая в нем известный IP-адрес, и рассылает запрос широковещательно. Все узлы локальной сети получают ARP запрос и сравнивают указанный там IP-адрес с собственным. В случае их совпадения узел формирует ARP-ответ, в котором указывает свой IP-адрес и свой локальный адрес и отправляет его уже направленно, так как в ARP-запросе отправитель указывает свой локальный адрес.

Следующий уровень стека протоколов (уровень II) является основным. На этом уровне функционируют протокол управления передачей TCP и протокол дейтаграмм пользователя UDP.

Протокол TCP это транспортный протоко л, который обеспечивает надежную передачу данных между процессами приложений в сети. Прежде чем начать передавать данные, TCP устанавливает между двумя компьютерами сеанс соединения. Затем поступающий из приложения поток данных в виде байтов разбивается на пакеты, в каждый пакет добавляется информация о нумерации пакетов, чтобы на принимающей стороне их можно было собрать в правильной последовательности. Нумерация позволяет обнаружить недостающие пакеты. Поступление пакетов подтверждается приемником. Байты, не получившие подтверждения в течение определенного времени, передаются заново. Соединение в TCP позволяет вести передачу данных одновременно в обе стороны, то есть осуществлять полнодуплексную передачу. Протокол IP используется протоколом TCP в качестве транспортного средства. Перед отправкой своих блоков данных протокол TCP помещает их в оболочку IP-пакета.

Протокол UDP обеспечивает передачу прикладных пакетов датаграммным способом и выполняет только функции связующего звена между сетевым протоколом и многочисленными прикладными процессами. Он не ориентирован на установление соединения. Не выполняется также нумерация пакетов данных, поэтому они могут быть потеряны, продублированы или прийти не в том порядке, в котором были отправлены. Однако UDP гарантирует правильность данных, поступивших на принимающий компьютер. Протокол более пригоден для передачи небольших сообщений, которые можно разместить в одном пакете, или для тех приложений, которым не страшна потеря некоторой порции данных. Функциональная простота протокола UDP обусловливает его высокое быстродействие. Однако по сравнению с TCP он менее надежный.

Различные сетевые приложения, установленные на одном компьютере, могут одновременно получать или отправлять сообщения. Для того чтобы их разделять, в протоколах транспортного уровня используют порты. Наиболее распространенные приложения используют предопределенные порты. Так, например, службе удаленного доступа к файлам FTP соответствует порт 21, службе telnet – 23, SMTP – 25, HTTP - 80. Назначение номеров портов известным прикладным процессам осуществляется централизованно, для менее распространенных служб - локально. Номер порта в совокупности с номером сети и номером конечного узла однозначно определяют прикладной процесс в сети. Этот набор идентифицирующих параметров носит название сокета (socket).

Верхний уровень (уровень I) называется прикладным. На этом уровне действуют протоколы передачи файлов FTP, эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Интернет, протокол передачи гипертекста HTTP и другие.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспортного протокол с установлением соединений – TCP. Кроме пересылки файлов протокол FTP предлагает и другие услуги. Так, пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов. Кроме того, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленного компьютера. При использовании сервиса telnet пользователь фактически управляет удаленным компьютером так же, как и локальный пользователь, поэтому такой вид доступа требует хорошей защиты. Поэтому серверы telnet всегда используют как минимум аутентификацию по паролю, а иногда и более мощные средства защиты.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Изначально протокол SNMP был разработан для удаленного контроля и управления маршрутизаторами Интернет. Позднее SNMP стали применять и для управления любым коммуникационным оборудованием – концентраторами, коммутаторами, сетевыми адаптерами и т.п. Проблема управления в протоколе SNMP разделяется на две задачи.

Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия SNMP-агента, работающего в управляемом оборудовании, и SNMP-монитора, работающего на компьютере администратора. Протоколы передачи определяют форматы сообщений, которыми обмениваются агенты и монитор.

Вторая задача связана с контролируемыми переменными, характеризующими состояние управляемого устройства. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в устройствах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые управляемое устройство должно сохранять, и допустимые операции над ними.

Пакет TCP/IP включает некоторые утилиты, предназначенные для просмотра параметров конфигурации протокола и устранения неполадок. К числу наиболее рапространенных утилит относятся следующие: ping, ARP и RARP, netstat, nbstat, утилиты конфигурирования IP: ipconfig, winipcfg, config, ifconfig, утилиты отслеживания маршрута: traceroute, tracert, iptrace. Все утилиты запускаются в командной строке, предназначены для использования в операционных системах Windows, UNIX / Linux.

Утилита ping используется для проверки соединения IP. Ее можно запускать как с доменным именем в качестве параметра, так с цифровым. Эта утилита посылает на принимающий компьютер эхо-запрос ICMP. Получив его, принимающий компьютер передает обратно эхо-ответ ICMP, что подтверждает наличие соединения. С помощью утилиты ping можно найти IP - адрес компьютера по его имени. Если в командной строке ввести команду ping microsoft.com, то на экран будет выведен адрес хоста: 207.46.130.108.

Утилита – nslookup – возвращает IP-адрес компьютера с заданным именем по цифровому адресу. С помощью утилиты ARP в одноименном протоколе можно просматривать и модифицировать отображение IP-адресов на MAC – адреса. Утилита netstаt позволяет получить статистику сети, связанную с активными в данный момент соединениями. Полученные данные используются для устранения неполадок в соединении TCP/IP. Команду можно использовать со следующим опциями: а – просмотр всех соединений и активных портов, е – просмотр статистика в Ethernet, р – вывод информации о выбранном протоколе (для Windows), r – просмотр таблицы маршрутизации и др. Конфигурационную информацию можно вывести в зависимости от операционной системы Windows или UNIX с помощью команд ipconfig и ifconfig соответственно. Эти утилиты возвращают информацию о текущих IP-адресе и MAC-адресе, о маске подсети, адрес сервера DNS, данные DHCP и др. Утилиты tracert и traceroute используются для отслеживания маршрута, по которому пакеты проходят от передающего компьютера к принимающему. Первая команда предназначена для Windows, вторая – для UNIX. Результат отслеживания содержит имена и IP- адреса компьютеров или маршрутизаторов, через которые прошел пакет.




Поделиться с друзьями:


Дата добавления: 2015-07-01; Просмотров: 1696; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.