КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Интегрирование методом замены переменой или способом подстановки
Интегрирование по частям Интегрирование методом замены переменой или способом подстановки Лекция №6. Тема: «Методы интегрирования (замена, «по частям»)». Основные вопросы: Пусть требуется найти интеграл , причем непосредственно подобрать первообразную для f(x) мы не сможем, но нам известно, что она существует. Сделаем замену переменной в подынтегральном выражении, положив x=φ(t), (1) где φ(t)-непрерывная функция с непрерывной производной, имеющая обратную функцию. Тогда dx= φ′(t)dt;докажем, что в этом случае имеет место следующее равенство: (2) Здесь подразумевается, что после интегрирования в правой части равенства вместо t будет подставлено его выражение через х на основании равенства (1). Для того чтобы установить, что выражения, стоящие справа и слева, одинаковы в указанном выше смысле, нужно доказать, что их производные по х равны между собой. Находим производную от левой части: Правую часть равенства (2) будем дифференцировать по х как сложную функцию, где t-промежуточный аргумент. Зависимость t от х выражается равенством (1), при этом и по правилу дифференцирования обратной функции . Таким образом, имеем
Следовательно, производные от х от право й и левой частей равенства (2) равны, что и требовалось доказать. Функцию следует выбирать так, чтобы можно было вычислить неопределенный интеграл, стоящий в правой части равенства (2). Замечание. При интегрировании иногда целесообразнее подбирать замену переменной не в виде , а в виде Проиллюстрируем это на примере. Пусть нужно вычислить интеграл, имеющий вид . Здесь удобно положить , тогда . Приведем несколько примеров на интегрирование с помощью замены переменных. Пример 1. Сделаем подстановку t=sin x; тогда dt= cosx dx и, следовательно, Пример 2. Полагаем t=1+x2 ;тогда dt=2xdx и Пример 3. Полагаем ; тогда dx=a dt, Пример 4. . Полагаем ; тогда dx=a dt, (предполагается, что a>0). Пример 5. Полагаем t=lnx; тогда . Пример 6. ? Полагаем ;тогда dt= 2xdx, Метод замены переменных является одним из основных методов вычисления неопределенных интегралов. Даже в тех случаях, когда мы интегрируем каким -либо другим методом, нам часто приходится в промежуточных вычислениях прибегать к замене переменных. Успех интегрирования зависит в значительной степени от того, сумеем ли мы подобрать такую удачную замену переменных, которая упростила бы данный интеграл. По существу говоря изучение методов интегрирования сводится к выяснению того, какую надо сделать замену переменной при том или ином виде подынтегрального выражения. Этому посвящены большая часть настоящего пункта.
Дата добавления: 2015-07-02; Просмотров: 409; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |