Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Технология тиражирования данных




Принципиальная характеристика тиражирования данных (data replication - dr) заключается в отказе от физического распределения данных. Суть dr состоит в том, что любая база данных (как для СУБД, так и для работающих с ней пользователей) всегда является локальной; данные размещаются локально на том узле сети, где они обрабатываются; все транзакции в системе завершаются локально.
Тиражирование данных - это асинхронный перенос изменений объектов исходной базы данных в базы, принадлежащим различным узлам распределенной системы. Функции dr выполняет, как правило, специальный модуль СУБД - сервер тиражирования данных, называемый репликатором (так устроены СУБД ca-openingres и sybase). В informix-online dynamic server репликатор встроен в сервер, в oracle 7 для использования dr необходимо приобрести дополнительно к oracle7 dbms опцию replication option.
Специфика механизмов dr зависит от используемой СУБД. Простейший вариант dr - использование "моментальных снимков" (snapshot). Рассмотрим пример из oracle:

create snapshot unfilled_orders refrash complete start with to_date ('dd-mon-yy hh23:mi:55') next sysdate + 7 as select customer_name, customer_address, order_date from customer@paris, order@london where customer.cust_name = order.customer_number and order_complete_flag = "n";

"Моментальный снимок" в виде горизонтальной проекции объединения таблиц customer и order будет выполнен в 23:55 и будет повторятся каждые 7 дней. Каждый раз будут выбираться только завершенные заказы.

Реальные схемы тиражирования, разумеется, устроены более сложно. В качестве базиса для тиражирования выступает транзакция к базе данных. В то же время возможен перенос изменений группами транзакций, периодически или в некоторый момент времени, что дает возможность исследовать состояние принимающей базы на определенный момент времени.

Детали тиражирования данных полностью скрыты от прикладной программы; ее функционирование никак не зависят от работы репликатора, который целиком находится в ведении администратора базы данных. Следовательно, для переноса программы в распределенную среду с тиражируемыми данными не требуется ее модификации. В этом, собственно, состоит качество 6 в определении Дэйта.
Синхронное обновление ddb и dr-технология - в определенном смысле антиподы. Краеугольный камень первой - синхронное завершение транзакций одновременно на нескольких узлах распределенной системы, то есть синхронная фиксация изменений в ddb. ee "Ахиллесова пята" - жесткие требования к производительности и надежности каналов связи. Если база данных распределена по нескольким территориально удаленным узлам, объединенным медленными и ненадежными каналами связи, а число одновременно работающих пользователей составляет сотни и выше, то вероятность того, что распределенная транзакция будет зафиксирована в обозримом временном интервале, становится чрезвычайно малой. В таких условиях (характерных, кстати, для большинства отечественных организаций) обработка распределенных данных практически невозможна.
dr-технология не требует синхронной фиксации изменений, и в этом ее сильная сторона. В действительности далеко не во всех задачах требуется обеспечение идентичности БД на различных узлах в любое время. Достаточно поддерживать тождественность данных лишь в определенные критичные моменты времени. Можно накапливать изменения в данных в виде транзакций в одном узле и периодически копировать эти изменения на другие узлы.
Налицо преимущества dr-технологии. Во-первых, данные всегда расположены там, где они обрабатываются - следовательно, скорость доступа к ним существенно увеличивается. Во-вторых, передача только операций, изменяющих данные (а не всех операций доступа к удаленным данным), и к тому же в асинхронном режиме позволяет значительно уменьшить трафик. В-третьих, со стороны исходной базы для принимающих баз репликатор выступает как процесс, инициированный одним пользователем, в то время как в физически распределенной среде с каждым локальным сервером работают все пользователи распределенной системы, конкурирующие за ресурсы друг с другом. Наконец, в-четвертых, никакой продолжительный сбой связи не в состоянии нарушить передачу изменений. Дело в том, что тиражирование предполагает буферизацию потока изменений (транзакций); после восстановления связи передача возобновляется с той транзакции, на которой тиражирование было прервано.

dr-технология данных не лишена недостатков. Например, невозможно полностью исключить конфликты между двумя версиями одной и той же записи. Он может возникнуть, когда вследствие все той же асинхронности два пользователя на разных узлах исправят одну и ту же запись в тот момент, пока изменения в данных из первой базы данных еще не были перенесены во вторую. При проектировании распределенной среды с использованием dr-технологии необходимо предусмотреть конфликтные ситуации и запрограммировать репликатор на какой-либо вариант их разрешения. В этом смысле применение dr-технологии - наиболее сильная угроза целостности ddb. На мой взгляд, dr-технологию нужно применять крайне осторожно, только для решения задач с жестко ограниченными условиями и по тщательно продуманной схеме, включающей осмысленный алгоритм разрешения конфликтов.

7.8 Архитектура "клиент-сервер"

Распределенные системы - это системы "клиент-сервер". Существует по меньшей мере три модели "клиент-сервер":

· Модель доступа к удаленным данным (rda-модель)

· Модель сервера базы данных (dbs-модель)

· Модель сервера приложений (as-модель)

Первые две являются двухзвенными и не могут рассматриваться в качестве базовой модели распределенной системы (ниже будет показано, почему это так). Трехзвенная модель хороша тем, что в ней интерфейс с пользователем полностью независим от компонента обработки данных. Собственно, трехзвенной ее можно считать постольку, поскольку явно выделены:

· Компонент интерфейса с пользователем

· Компонент управления данными (и базами данных в том числе)

а между ними расположено программное обеспечение промежуточного слоя (middleware), выполняющее функции управления транзакциями и коммуникациями, транспортировки запросов, управления именами и множество других. middleware - это ГЛАВНЫЙ компонент распределенных систем и, в частности, ddb-систем. Главная ошибка, которую мы совершаем на нынешнем этапе - полное игнорирование middleware и использование двухзвенных моделей "клиент-сервер" для реализации распределенных систем.

Существует фундаментальное различие между технологией "sql-клиент - sql-сервер" и технологией продуктов класса middleware (например, менеджера распределенных транзакций tuxedo system). В первом случае клиент явным образом запрашивает данные, зная структуру базы данных (имеет место так называемый data shipping, то есть "поставка данных" клиенту). Клиент передает СУБД sql-запрос, в ответ получает данные. Имеет место жесткая связь типа "точка- точка", для реализации которой все СУБД используют закрытый sql-канал (например, oracle sql*net). Он строится двумя процессами: sql/net на компьютере - клиенте и sql/net на компьютере-сервере и порождается по инициативе клиента оператором connect. Канал закрыт в том смысле, что невозможно, например, написать программу, которая будет шифровать sql- запросы по специальному алгоритму (стандартные алгоритмы шифрования, используемые, например, в oracle sql*net, вряд ли будут сертифицированы ФАПСИ).
В случае трехзвенной схемы клиент явно запрашивает один из сервисов (предоставляемых прикладным компонентом), передавая ему некоторое сообщение (например) и получает ответ также в виде сообщения. Клиент направляет запрос в информационную шину (которую строит tuxedo system), ничего не зная о месте расположения сервиса. Имеет место так называемый function shipping (то есть "поставка функций" клиенту). Важно, что для Клиента база данных (в том числе и ddb) закрыта слоем Сервисов. Более того, он вообще ничего не знает о ее существовании, так как все операции над базой данных выполняются внутри сервисов.
Сравним два подхода. В первом случае мы имеем жесткую схему связи "точка-точка" с передачей открытых sql-запросов и данных, исключающую возможность модификации и работающую только в синхронном режиме "запрос-ответ". Во втором случае определен гибкий механизм передачи сообщений между клиентами и серверами, позволяющий организовывать взаимодействие между ними многочисленными способами.
Таким образом, речь идет о двух принципиально разных подходах к построению информационных систем "клиент-сервер". Первый из них устарел и явно уходит в прошлое. Дело в том, что sql (ставший фактическим стандартом общения с реляционными СУБД) был задуман и реализован как декларативный язык запросов, но отнюдь не как средство взаимодействия "клиент-сервер" (об этой технологии тогда речи не было). Только потом он был "притянут за уши" разработчиками СУБД в качестве такого средства. На волне успеха реляционных СУБД в последние годы появилось множество систем быстрой разработки приложений для реляционных баз данных (visualbasic, powerbuilder, sql windows, jam и т.д.). Все они опирались на принцип генерации кода приложения на основе связывания элементов интерфейса с пользователем (форм, меню и т.д.) с таблицами баз данных. И если для быстрого создания несложных приложений с небольшим числом пользователей этот метод подходит как нельзя лучше, то для создания корпоративных распределенных информационных систем он абсолютно непригоден.
Для этих задач необходимо применение существенно более гибких систем класса middleware (tuxedo system, teknekron), которые и составляют предмет нашей профессиональной деятельности и базовый инструментарий при реализации больших проектов.

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 722; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.