КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Гармонические колебания в контуре
Закон Ома для неоднородного участка цепи: , где - сопротивление элементов контура. В колебательном контуре: = - разность потенциалов на обкладках конденсатора. Подставив в исходное уравнение, получим: . Поскольку сила тока = , а = , то уравнение примет вид: . Это - дифференциальное уравнение второго порядка. При оно перепишется: . Решением такого уравнения является функция , где - фазовый угол (или фаза колебаний), который выражается в радианах, - начальная фаза колебаний (при t=0), - собственная круговая частота колебаний в контуре. Сила тока в колебательном контуре: . Напряжение в контуре: . В математике и физике колебания, которые подчиняются синусоидальному закону, называются гармоническими. Максимальное значение функции называют амплитудой. В гармонических колебаниях значение функции становится максимальным, если cos или sin становятся равными 1. Таким образом, амплитуда колебаний силы тока в контуре , а амплитуда колебаний напряжения на конденсаторе . Закон колебаний силы тока в соленоиде и напряжения на конденсаторе можно получить при начальной фазе : ; . Отсюда следует, что в колебательном контуре фаза колебаний силы тока в катушке отстает от фазы колебания напряжения на конденсаторе на угол (рисунок 39).
Время, затраченное на одно полное колебание, называется периодом колебаний Т (рисунок 39). Число колебаний в единицу времени называется частотой колебаний . . Размерность частоты: [ ]=1 Гц (герц).
В выражении угол , где угловая частота . Тогда ток в любой момент времени : Период собственных колебаний контура определяется формулой Томпсона: . Отсюда: – собственная частота колебаний в контуре и . Из этих формул следует, что при достаточно малых значениях L и C в контуре можно получить электромагнитные колебания высокой частоты, измеряемые миллионами герц и больше. В реальном электрическом контуре из-за потерь энергии на нагревание проводников и диэлектриков энергия магнитного и электрического полей постепенно превращается во внутреннюю энергию и колебания через некоторое время прекращаются. Такие колебания называются затухающими. При период колебаний
Дата добавления: 2015-07-02; Просмотров: 1228; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |